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SUMMARY

Tutte paths have been well studied in the literature due to their applications with the

Hamiltonian cycle problem. We prove the existence of Tutte paths in circuit graphs in

which the number of nontrivial bridges is bounded. As a consequence, we obtain sharp

circumference bounds for essentially 4-connected planar graphs. The Traveling Salesper-

son Problem is a foundational problem in the optimization literature and generalizes the

Hamiltonian cycle problem. Motivated by the Traveling Salesperson Problem, we investi-

gate even covers of subcubic graphs, i.e., finding a small number of cycles that cover the

majority of the vertices. As an application, we obtain a 5/4-approximation algorithm for

the Traveling Salesperson Problem on 2-connected cubic graphs.
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CHAPTER 1

INTRODUCTION

1.1 Background and History

A Hamiltonian cycle in a graph is a cycle that passes through every vertex of a graph. The

study of Hamiltonian cycles has its origin in the 19th Century mathematician, Sir William

Rowan Hamilton. Hamilton studied a noncommutative algebra which characterized Hamil-

tonian cycles in the graph of the regular dodecahedron [16, 31, 32]. This algebra had a geo-

metric interpretation of walking along the faces of the icosahedron, which Hamilton called

the the icosian calculus. Hamilton branded this as a game, selling it to a game designer.

This later proved to be a financial failure for the game maker [9]. While the name of such

cycles traces back to Hamilton, it should be noted that Karper investigated the Hamiltonian

cycle problem for more general polyhedra a few years prior to Hamilton [43].

Regardless of its origins, the study of Hamiltonian cycles has had profound impacts on

mathematics, computer science, and optimization. The Four Color Theorem [4, 41] ( also

[52]) states that every planar graph can be face 4-colorable. For quite a long time, the Four

Color Theorem was the Four Color Conjecture. The question was first asked as early as

the 1850s [9, 30]. The conjecture, at first receiving little attention, eventually developed a

notoriety of difficultly, accumulating a large list of ideas and techniques towards possible

proof strategies [50, 53]. Many of these ideas, while failing their initial goal to prove the

Four Color Theorem, matured into deep and rich combinatorial theories. It is well known

now that if a plane graph is Hamiltonian, then it has a face 4-coloring. This connection

between cycles and face-coloring can be traced as one of the early justifications for the

serious academic study of Hamiltonian cycles, see for example [65]. Remarkably, even

today, every proof of the Four Color Theorem has required computer assistance.
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After giving a false proof the Four Color Theorem, Tait [58] conjectured that every

3-connected planar cubic graph contains a Hamiltonian cycle. If true, such a claim would

also imply the Four Color Theorem. Tutte [64] disproved this conjecture by giving a coun-

terexample. Tutte’s construction relied on a gadget obtained from modifying the graph of a

pentagonal prism, now called a Tutte fragment in the literature. There has been additional

work on finding more counterexamples to Tait’s conjecture, see [2] or [33].

Strengthening the connectivity assumption to Tait’s conjecture is sufficient for the ex-

istence of Hamiltonian cycles. Whitney [65] proved that every 4-connected planar tri-

angulations are Hamiltonian and Tutte [63] further generalized this by showing all 4-

connected planar graphs are Hamiltonian. Thomassen [62] later showed that 4-connected

planar graphs are Hamiltonian connected, i.e., there exists a Hamiltonian path between

any two specified vertices. A small correction to Thomassen’s proof was made by Chiba

and Nishizeki [14] and a shorter alternative proof was given by Ozeki [51]. A slight im-

provement to Thomassen’s result was given by both Sanders [54] and Thomas and Yu [59].

Algorithmic versions of these results have also been studied [8, 55].

We have seen that 4-connected planar graphs are Hamiltonian, and 3-connected planar

graphs may not be. This leads to the natural question of understanding the relationship

between connectivity and circumference of planar graphs. (The circumference of a graph

is the length of a longest cycle in that graph.) For 2-connectivity, planar n-vertex graphs

of size at least n ≥ 5 may have a circumference as low as 4, with the infinite family of

complete bipartite graphs K2,n−2 exhibiting this bound. Chen and Yu [13] showed that the

circumference of a 3-connected planar n-vertex graph is Θ(nlog3 2). This bound too is best

possible with Chen and Yu [13] giving a family of iterated planar triangulations that exhibit

this bound.

For any positive integer k, a graph is essentially k-connected if it is (k − 1)-connected

and, for any S ⊆ V (G) with |S| < k, G − S is connected or has exactly two components

one of which is trivial. A graph is cubic if all of its vertices have degree 3. Grünbaum
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and Malkevitch [29] observed that essentially 4-connected cubic planar n-vertex graphs

have circumference at least 3n/4, with Zhang [70] improving their bound by an additive

constant of one. Jackson and Wormald [34] proved that the circumference of an essentially

4-connected n-vertex graph is at least (2n+ 4)/5. Using a set of discharging rule, Fabrici,

Harant, Mohr, and Schmidt [21] improved this to 5(n + 2)/8. Fabrici, Harant, Mohr, and

Schmidt [20] also showed that essentially 4-connected triangulations have circumference

at least 2(n + 4)/3 and conjectured this bound could be extended to all essentially 4-

connected planar graph. Wigal and Yu [68] and independently Kessler and Schmidt [42]

(using completely different methods) proved the following.

Theorem 1.1.1. Let n ≥ 6 be an integer and let G be an essentially 4-connected planar

n-vertex graph. Then the circumference of G is at least ⌈(2n+ 6)/3⌉.

This bound is best possible. Take a 4-connected triangulation T on k vertices, and

inside each face of T add a new vertex and three edges from the new vertex to the three

vertices in the boundary of that face. The resulting graph, say G, has n := 3k − 4 vertices.

Now take an arbitrary cycle C in G. For each x ∈ V (C) with degree three in G, deleting x

from C and adding the edge between the two neighbors of x in C, we obtain a cycle in T ,

say D. Then |D| ≤ k; which implies |C| ≤ 2k. Hence, the circumference of G is at most

2k = 2(n+ 4)/3 = ⌈(2n+ 6)/3⌉.

The proof of Theorem 1.1.1 builds on the ideas and techniques from the proofs of

Tutte [63] and Thomassen [62], finding a cycle C in a 2-connected graph G such that

every component of G − C has at most three neighbors on C. A cycle or path with such

property is denoted as Tutte. Note the assumption that G is 4-connected implies that C

must be a Hamiltonian cycle. If we instead assume that G is essentially 4-connected, then

each component of G − C would be a single vertex. Thus if we bound the number of

components of G − C, then we also obtain a lower bound for the length of C. This was

the main idea employed in [68] to obtain the sharp lower bound for the circumference of

essentially 4-connected graphs.
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Another closely related problem to the Hamiltonian cycle problem is the famous Travel-

ling Salesperson Problem. The Travelling Salesperson Problem (TSP) asks for a spanning

cycle of minimum length in an edge-weighted complete graph. The problem has remained

a cornerstone to the fields of combinatorics, computer science, and optimization. The TSP

is NP-hard, as it generalizes the Hamiltonian cycle problem, one of Karp’s original exam-

ples in his seminal paper on NP-completeness [36]. In fact, is not possible to approximate

the TSP within any constant factor of the optimum unless P = NP [69]. Thus it seems

unlikely for there to exist an efficient algorithm to solve this problem. Regardless, the im-

portance of the problem in practical matters cannot be understated, and has continued to

receive significant attention.

An important special case of the TSP which admits a constant factor approximation is

the metric TSP in which the edge weights form a metric, a natural assumption for many

applications. A further specialization of the metric TSP is the graphic TSP in which the

edge weights form the distance function in some underlying connected graph G on the

same vertex set. This is equivalent to finding a spanning closed walk, a TSP walk, in G

with the minimum number of edges. We denote this minimum length by tsp(G).

The graphic TSP still contains the Hamiltonian cycle problem, and is thus NP-hard to

solve exactly. A classic result of Christofides [15] and independently Serdyukov [7, 57]

gives a 3
2
-approximation for the metric TSP. For many years, this had remained the best ap-

proximation ratio for any nontrivial special case of the metric TSP. The first improvement

was made in 2005 by Gamarnik, Lewenstein, and Sviridenko [22] who gave a (3
2
− 5

389
)-

approximation algorithm for the special case of the graphic TSP on 3-connected cubic

graphs. Following this result, Gharan, Saberi, and Singh [26] gave a (3
2
− ϵ)-approximation

algorithm for the general graphic TSP. Then Mömke and Svensson [46] gave a novel ap-

proach for a 1.461-approximation algorithm for the graphic TSP, which was shown to be

in fact a 13
9

-approximation by Mucha [47]. Later, Sebő and Vygen [56] presented a new

algorithm for an improved 7
5
-approximation for the graphic TSP. For the metric TSP, the

4



3
2

ratio was only very recently improved by Karlin, Klein, and Gharan [35] to (3
2
− ε)

for some constant ε > 10−36. While both the metric and graphic TSP allow for con-

stant factor approximation, they remain APX-hard, i.e., unless P = NP , there does not

exist polynomial-time approximation schemes. In particular, it is known that the metric

and graphic TSPs are NP-hard to approximate within a 123
122

and 185
184

-factor of the optimum

respectively [37, 45].

A special case of graphic TSP extensively studied is when the input graph is planar.

Arora et al. [5] showed that planar graphs with arbitrary positive edge weights have a poly-

nomial time approximation scheme for the TSP. Klein [44] later improved this, showing

for any fixed ε > 0, there exists a linear-time algorithm that finds a TSP tour within (1+ ε)

of the optimum. In particular, under the assumption of planarity, the TSP is no longer

APX-hard. From the structural viewpoint, Kawarabayashi and Ozeki [40] showed that 3-

connected planar graphs have TSP tours of length at most 4(n−1)/3, with this bound being

tight.

Another special case of the graphic TSP, namely on subcubic graphs, has received sig-

nificant attention (a graph is subcubic if all of its vertices have degree at most 3). Subcubic

and cubic graphs are simple classes of graphs which retain the inapproximability of the

metric TSP. Even when restricted to subcubic and cubic graphs, it remains NP-hard to ap-

proximate within a 685
684

and 1153
1152

-factor respectively [38]. Furthermore, subcubic graphs are

known to exhibit the worst-case behavior in a well-known conjecture from the 80’s (see

[27]), which asserts that the subtour elimination linear program relaxation for the metric

TSP has an integrality gap of 4
3
. This 4

3
-integrality gap can be asymptotically realized by a

family of subcubic graphs, see for example [6].

Note that a polynomial-time constructive proof of the 4
3
-integrality gap would yield a

4
3
-approximation algorithm for the TSP. Motivated by this, Aggarwal, Garg, and Gupta

[1] gave a 4
3
-approximation for 3-connected cubic graphs. This approximation ratio was

extended to 2-connected cubic graphs by Boyd et al. [10], and to 2-connected subcubic
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graphs by Mömke and Svensson [46]. The 4
3

ratio was then slightly improved for cubic

graphs to (4
3
− 1

61326
) by Correa, Larreé, and Soto [17] and independently to (4

3
− 1

8754
)

by Zuylen [71], which was further improved to 1.3 by Candráková and Lukot’ka [12], and

later to 9
7

by Dvořák, Král’, and Mohar [19].

Let G be a simple 2-connected subcubic graph. We write n(G) to denote the number

of vertices in G, and n2(G) to denote the number of degree 2 vertices in G. Dvořák, Král’,

and Mohar [19] showed that G has a TSP walk of length at most 9n(G)+2n2(G)
7

− 1. They

also constructed infinitely many subcubic (respectively, cubic) graphs whose minimum

TSP walks have lengths 5n(G)+n2(G)
4

− 1 (respectively, 5n(G)
4

− 2), and conjectured that

5n(G)+n2(G)
4

− 1 is the correct bound. Wigal, Yoo, and Yu proved the following.

Theorem 1.1.2. [66] Let G be a 2-connected simple subcubic graph. Then tsp(G) ≤
5n(G)+n2(G)

4
− 1. Moreover, a TSP walk of length at most 5n(G)+n2(G)

4
− 1 can be found in

O(n(G)2) time.

Note this provides a 5
4
-approximation algorithm for the graphic TSP on simple cubic

graphs. We remark that our algorithm is purely combinatorial and deterministic. We also

characterize the extremal examples of Theorem 1.1.2; that is, the 2-connected simple sub-

cubic graphs G such that tsp(G) = 5n(G)+n2(G)
4

− 1 (see Theorem 3.4.5). As pointed out

by Dvořák et al. [19], Theorem 1.1.2 is false for non-simple graphs. This can be seen from

the graph obtained from three internally disjoint paths between two vertices, each of length

2k + 1, by the addition of parallel edges so that it becomes cubic.

1.2 Preliminaries

In order to prove Theorem 1.1.1, the strategy employed is to find a cycle C in a 2-connected

planar graph G such that every component of G−C has at most three neighbors on C and

the number of components of G− C is as small as possible. We now introduce the related

concepts and terminologies. For general references, we refer to [18] for graph theory and

[69] for approximation algorithms.
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Let G be a graph and H ⊆ G. An H-bridge of G is the subgraph of G induced by

an edge in E(G) \ E(H) with both incident vertices on H or induced by the edges of G

that are incident with one or two vertices in a single component of G−H . We use βG(H)

to denote the number of H-bridges in G with at least 3 vertices. For any H-bridge B of

G, a vertex in V (B ∩ H) is called an attachment of B on H . We say that H is a Tutte

subgraph of G if every H-bridge of G has at most three attachments on H . Moreover, for

any subgraph F ⊆ G, H is said to be an F -Tutte subgraph of G if H is a Tutte subgraph of

G and every H-bridge of G containing an edge of F has at most two attachments on H . A

Tutte cycle (respectively, Tutte path) is a Tutte subgraph that is a cycle (respectively, path).

For any positive integer k and any graph G, a k-separation in G is a pair (G1, G2) of

subgraphs of G such that |V (G1 ∩ G2)| = k, G = G1 ∪ G2, E(G1) ∩ E(G2) = ∅, and

Gi ̸⊆ G3−i for i = 1, 2. A k-cut in G is a set S ⊆ V (G) with |S| = k such that there exists

a separation (G1, G2) in G with |V (G1 ∩G2)| = k and Gi −G3−i ̸= ∅ for i = 1, 2.

To state our technical result, we need further notation. Given a plane graph G and a

cycle C in G, we say that (G,C) is a circuit graph if G is 2-connected, C is the outer cycle

of G (i.e. C bounds the infinite face of G), and, for any 2-cut T in G, each component

of G − T must contain a vertex of C. Note as G is embedded into the plane, C has a

clockwise orientation and a counterclockwise orientation. For any distinct elements x, y ∈

V (C)∪E(C), we use xCy to denote the subpath of C in clockwise order from x to y such

that x, y /∈ E(xCy), and we say that xCy is good if G has no 2-separation (G1, G2) with

V (G1 ∩G2) = {s, t} such that x, s, t, y occur on xCy in order, sCt ⊆ G2, and |G2| ≥ 3.

Moreover, let

τGxy =



1, xCy is not good,

1, |{x, y} ∩ E(C)| = 1 and x and y are incident,

1/2, |{x, y} ∩ E(C)| = 1 and |xCy| = 2,

0, otherwise.

7



We remark now these τ parameters are a rescaling of the τ parameters present in Wigal and

Yu [68], see Corollary 2.2.9. If there is no danger of confusion, we may drop the reference

to G. In nonrigorous terms, these τ parameters for particular choices of x and y will

function as a measurement from how far a circuit graph (G,C) is from being 3-connected.

Our main technical theorem for Tutte paths is the following.

Theorem 1.2.1. Let (G,C) be a circuit graph and let u, v ∈ V (C) be distinct and e ∈

E(C), such that u, e, v occur on C in clockwise order. Then G has a C-Tutte path P

between u and v such that e ∈ E(P ) and

β(P ) ≤ (|P | − 6)/2 + τvu + τue + τev (1.1)

Theorem 1.2.1 is a strengthening of the technical theorem presented in [68]. In particu-

lar, the number of nontrivial bridges is now bounded in terms of the vertices in the path P ,

rather than the number of vertices of the graph G. In Corollary 2.2.9, we recover the orig-

inal technical result in terms of bounding the number of nontrivial bridges in terms of the

vertex count. As an application, in Theorem 2.3.1 we obtain sharp circumference bounds

for essentially 4-connected graphs.

In Section 2.1, we consider some special cases for Theorem 1.2.1. In Section 2.2, we

prove Theorem 1.2.1. In Section 2.3, we apply Theorem 1.2.1 providing sharp circumfer-

ence bounds for essentially 4-connected planar graphs.

To prove our result on TSP walks in subcubic graphs, i.e., Theorem 1.1.2, we follow

[19] in considering spanning subgraphs F of G in which every vertex has even degree.

We call such a spanning subgraph F an even cover, and note that when G is a subcubic,

F consists of vertex-disjoint cycles and isolated vertices. We let c(F ) denote the number

of cycles in F and i(F ) denote the number of isolated vertices in F . The excess of F is

defined to be

exc(F ) = 2c(F ) + i(F ).
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For a graph G, let E(G) denote the set of even covers of G, and define the excess of G as

exc(G) = min
F∈E(G)

exc(F ).

As an example, consider the graph Θ which consists of three internally disjoint paths

between two vertices, each path with k vertices of degree 2. It is easy to see that every even

cover may contain at most one cycle. As a result, the even cover consisting of a cycle and

k isolated vertices obtain the minimum excess. Thus for k ≥ 1,

exc(Θ) = 2 + k ≤ (3k + 2) + 3k

4
+ 1 =

n(Θ) + n2(Θ)

4
+ 1,

with equality when k = 1 (in which case Θ ∼= K2,3).

It is observed in [19] that if G is a subcubic graph, then there is an exact relation between

tsp(G) and exc(G):

Proposition 1.2.2 (Dvořák et al. [19]). Let G be a subcubic graph. Then

tsp(G) = exc(G)− 2 + n(G). (1.2)

Moreover, an even cover F ∈ E(G) can be converted into a TSP walk in G of length

exc(F )− 2 + n(G) in linear time.

Thus, to prove Theorem 1.1.2, it suffices to show that

exc(G) ≤ n(G) + n2(G)

4
+ 1. (1.3)

and that an even cover F of G satisfying this bound can be found in quadratic time.

To prove Theorem 1.1.2, we attack the problem in the following way. A natural strategy

is given an edge e ∈ E(G), to find an even cover F such that e ∈ E(F ) such that exc(F ) ≤
n(G)+n2(G)

4
+1 as in (1.3). This is not always possible, but in this case, one can find an even

9



cover F ′ such that e ̸∈ E(F ′) and exc(F ′) satisfies (1.3). A similar situation holds if one

asks for an even cover F such that e ̸∈ E(F ) and exc(F ) satisfies (1.3). To prove this

behavior indeed occurs for even covers, an understanding of the structural properties of the

extremal graphs for when (1.3) fails is necessary.

In Section 3.1, we develop our key definitions and state our accompaning technical

theorem (Theorem 3.1.4) from which Theorem 1.1.2 will follow. In Section 3.2, we provide

some technical lemmas on the structure of the extremal graphs for Theorem 3.1.4, which

we call θ-chains. We complete the proof of Theorem 3.1.4 in Section 3.3. In Section 3.4,

we characterize extremal graphs for Theorem 3.1.4. In Section 3.5, we give a quadratic-

time algorithm that finds an even cover F in simple 2-connected subcubic graphs G with

exc(F ) ≤ n(G)+n2(G)
4

+ 1.

We end this section with notation. For a positive integer k, let [k] = {1, . . . , k}. If G

and H are graphs, we write G∪H (respectively, G∩H) to denote the union (intersection)

of G and H . Let G be a graph. If S is a set of vertices or a set of edges, we let G − S

denote the subgraph of G obtained by deleting elements of S as well as edges incident with

a vertex in S. When S = {s} is a singleton, we simply write G − s. If H is a subgraph

of G, we let G − H := G − V (G ∩ H). For a collection of 2-element subsets of V (G),

we write G + S for the graph with vertex set V (G) and edge set E(G) ∪ S. However, for

x, y ∈ V (G) we use G + xy to denote the graph obtained from G by adding a (possibly

parallel) edge between x and y. For a subgraph H ⊆ G and a set S ⊆ V (G), we let H + S

denote the subgraph of G such that V (H + S) = V (H) ∪ S and E(H + S) = E(H).

For S ⊆ V (G), we use N(S) to denote the neighborhood of S in G. If S = {s} is a

singleton, we simply write N(s). When |N(S)| ∈ {1, 2}, suppressing S means deleting S

and adding a (possibly loop or parallel) edge between the vertices of N(S). When S = {s}

is a singleton, suppressing s means suppressing {s}.
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CHAPTER 2

TUTTE PATHS

In this chapter, we provide results on bounding the number of nontrivial bridges of Tutte

paths in circuit graphs.

2.1 Special Cases

In this section, we prove some technical lemmas and special cases to Theorem 1.2.1. The

following lemma is concerned with the base cases of the induction.

Lemma 2.1.1. Let (G,C) be a circuit graph and let u, v ∈ V (C) be distinct and e ∈ E(C),

such that u, e, v occur on C in clockwise order. If e = uv or |G| = 3 then Theorem 1.2.1

holds. In particular, G has a C-Tutte path P between u and v such that e ∈ E(P ), and

β(P ) = 1 if e = uv and β(P ) = 0 if e ̸= uv and |G| = 3.

Proof. As G is 2-connected, we have |G| ≥ 3. First suppose e = uv. Then vCu is not

good because of the 2-separation (uCv,G − uv); so τvu = 1. Moreover, since u, v are

both incident with e, τue = τev = 1. Hence, P := uv gives the desired C-Tutte path as

β(P ) = 1 = (|P | − 6)/2 + τvu + τue + τev.

Now assume e ̸= uv and |G| = 3. Further assume by symmetry that u is not incident

with e. Then τvu = 0, τue = 1/2, and τev = 1. Hence, P := C − uv gives the desired

C-Tutte path as β(P ) = 0 = (|P | − 6)/2 + τvu + τue + τev.

The following two lemmas are concerned with the existence of particular 2-cuts.

Lemma 2.1.2. Suppose n ≥ 4 is an integer and Theorem 1.2.1 holds for graphs on at most

n − 1 vertices. Let (G,C) be a circuit graph on n vertices, u, v ∈ V (C) be distinct, and

e ∈ E(C) such that u, e, v occur on C in clockwise order. If G has a 2-separation (G1, G2)
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such that {u, v} ⊆ V (G1), {u, v} ̸⊆ V (G2), e ∈ E(G2), and |G2| ≥ 3, then G has a C-

Tutte Path P between u and v such that e ∈ E(P ) and β(P ) ≤ (|P |−6)/2+τvu+τue+τev.

Proof. Let V (G1 ∩G2) = {x, y} with x ∈ V (eCv) and y ∈ V (uCe). See Figure 2.1. Let

G′
i := Gi+xy for i ∈ {1, 2} such that G′

1 is a plane graph with outer cycle C1 := xCy+yx

and G′
2 is a plane graph with outer cycle C2 := yCx+ xy, i.e., both (G′

1, C1) and (G′
2, C2)

are circuit graphs. Let e1 := xy. Since {u, v} ̸⊆ V (G2), we may assume by symmetry that

u ̸= y.

By assumption, G′
1 has a C1-Tutte path between u and v such that e1 ∈ E(P1) and

βG′
1
(P1) ≤ (|P1| − 6)/2 + τG′

1vu
+ τG′

1ue1
+ τG′

1e1v
,

and G′
2 has a C2-Tutte path P2 between x and y such that e ∈ E(P2) and

βG′
2
(P2) ≤ (|P2| − 6)/2 + τG′

2xy
+ τG′

2ye
+ τG′

2ex
.

Let P := (P1 − e1) ∪ P2, and note P is a C-Tutte path in G between u and v such that

e ∈ E(P ). Moreover, as |P1|+ |P2| = |P |+ 2, τG′
1vu

= τGvu, and τG′
2xy

= 0, we have,

βG(P ) = βG′
1
(P1) + βG′

2
(P2)

≤ (|P | − 6)/2− 2 + τGvu + τG′
1ue1

+ τG′
1e1v

+ τG′
2ye

+ τG′
2ex

.

We claim that τG′
1e1v

+ τG′
2ex

≤ τGev + 1. This is clear if τGev = 1. If τGev = 1/2 then

|eCv| = 2, and, hence, |e1C1v| = |xCv| = 2 or |eC2x| = |eCx| = 2; so τG′
1e1v

= 1/2 or

τG′
2ex

= 1/2, and the claim holds as well. Now suppose τGev = 0. Then |eCv| ≥ 3. and

eCv is good. So |e1C1v| ≥ 3 and e1C1v is good in G′
1, or |eC2x| ≥ 3 and |eC2x| is good in

G′
2, or |e1C1v| = |eC2x| = 2. Hence, τG′

1e1v
= 0, or τG′

2ex
= 0, or τG′

1e1v
= τG′

2ex
= 1/2.

In either case, the claim holds.

By similar argument, τG′
1ue1

+ τG′
2ye

≤ τGue + 1. So βG(P ) ≤ (|P | − 6)/2 + τGvu +

12



τGue + τGev.

Figure 2.1: The separation (G1, G2) of G.

Lemma 2.1.3. Suppose n ≥ 4 is an integer and Theorem 1.2.1 holds for graphs on at most

n − 1 vertices. Let (G,C) be a circuit graph on n vertices, u, v ∈ V (C) be distinct, and

e = xy ∈ E(C), such that u, x, y, v occur on C in clockwise order.

If {u, x} or {v, y} is a 2-cut in G then G has a C-Tutte path P between u and v such

that e ∈ E(P ) and βG(P ) ≤ (|P | − 6)/2 + τGvu + τGue + τGev.

Proof. Suppose {u, x} or {v, y} is a 2-cut in G, say {u, x} by symmetry. Then G has a

2-separation (G1, G2) such that xCu ⊆ G1, uCx ⊆ G2, and |G2| ≥ 3. We choose (G1, G2)

so that G2 is maximal. See Figure 2.2. Note then ux ̸∈ E(G1) and τGue = 1.

Case 1. G1 is 2-connected.

Let C1 denote the outer cycle of G1. As (G,C) is a circuit graph, (G1, C1) is a circuit

graph as well. By assumption, G1 has a C1-Tutte path P between u and v such that e ∈

E(P ) and

βG1(P ) ≤ (|P | − 6)/2 + τG1vu + τG1ue + τG1ev.

Note that τG1vu = τGvu, τG1ue = 0 (as ux ̸∈ E(G1)), and τG1ev = τGev. So

βG(P ) = βG1(P ) + 1 ≤ (|P | − 6)/2 + τGvu + τGue + τGev

and thus P is the desired path.
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Case 2. G1 is not 2-connected.

Let G′
1 := G1 + ux be the plane graph with outer cycle C1 := xCu + ux, and let

G′
2 := G2+xu be the plane graph with outer cycle C2 := uCx+xu. As (G,C) is a circuit

graph, we see that both (G′
1, C1) and (G′

2, C2) are circuit graphs. Note τG′
1vu

= τGvu,

τG′
1ue

= 1/2, and τG′
1ev

= τGev. By assumption, G′
1 has a C1-Tutte path P1 between u and

v such that e ∈ E(P1) and

βG′
1
(P1) ≤ (|P1| − 6)/2 + τG′

1vu
+ τG′

1ue
+ τG′

1ev

= (|P | − 6)/2 + τGvu + (τGue − 1/2) + τGev.

As G1 is not 2-connected, ux ∈ E(P1).

Choose e′ ∈ E(uC2x) such that τG′
2e

′x = 1/2 and τG′
2ue

′ ≤ 1. Note τG′
2xu

= 0. By

assumption, G′
2 has a C2-Tutte path P2 between x and u such that e′ ∈ E(P2) and

βG2(P2) ≤ (|P2| − 6)/2 + τG′
2xu

+ τG′
2ue

′ + τG′
2e

′x ≤ (|P2| − 6)/2 + 3/2

Now P := (P1 − ux)∪P2 is a C-Tutte path in G between u and v such that e ∈ E(P ).

Moreover,

βG(P ) = βG′
1
(P1) + βG′

2
(P2)

≤ (|P1| − 6)/2 + τGvu + (τGue − 1/2) + τGev + (|P2| − 6)/2 + 3/2

< (|P | − 6)/2 + τGvu + τGue + τGev.

So P is the desired path.
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Figure 2.2: The other separation (G1, G2) of G.

The following lemma is included for later convenience where we want to find a Tutte

path that includes three designated vertices. A vertex count analog to this lemma first

appeared in [67].

Lemma 2.1.4. Suppose n ≥ 3 is an integer and Theorem 1.2.1 holds for graphs on at most

n − 1 vertices. Let (G,C) be a circuit graph on n vertices and u, v, z ∈ V (C) be distinct

such that u, z, v occur on C in clockwise order. Then G has a C-Tutte path P between u

and v such that z ∈ V (P ) and β(P ) ≤ (|P | − 3)/2 + τvu.

Proof. First suppose n = 3 and choose e ∈ E(G) such that e ̸= uv. Then by Lemma 2.1.1,

then G has a C-Tutte path P between u and v such that β(P ) = 0. In particular, P is

Hamiltonian and thus z ∈ V (P ). We proceed with induction on n.

Now suppose n > 3 and there is no 2-cut separating z from {u, v}. Choose an edge e

such that τGue ≤ 1/2. By induction there exists a C-Tutte path P between u and v such

that e ∈ V (P ) and

βG(P ) ≤ (|P | − 6)/2 + τGue + τGev + τGvu

≤ (|P | − 3)/2 + τGvu.

As there is no 2-cut separating z from {u, v}, we have z ∈ V (P ).

Now let (G1, G2) be a 2-separation in G with {u, v} ⊆ V (G1) and z ∈ V (G2). Let

V (G1 ∩ G2) = {x, y} such that u, x, z, y, v appear on C in clockwise order. Let G′
1 :=

15



G1 + xy and G′
2 := G2 + xy be plane graphs with respective outer cycles C1 := yCx+ xy

and C2 := xCy + xy. Then (G′
i, Ci) are circuit graphs for i ∈ [2].

As |G′
1| < n, Theorem 1.2.1 holds for G′

1 (by assumption), thus G′
1 has a C1-Tutte path

P1 between u and v such that e := xy ∈ E(P1) and

βG′
1
(P1) ≤ (|P1| − 6)/2 + +τG′

1ue
+ τG′

1ev
+ τG′

1vu

≤ (|P1| − 2)/2 + τG′
1vu

.

Note that τG′
2yx

= 0. Thus, by induction, G′
2 has a C2-Tutte path P2 between x and y such

that z ∈ V (P2) and

βG′
2
(P2) ≤ (|P2| − 3)/2.

Let P := (P1 − xy) ∪ P2. As |P1|+ |P2| = |P |+ 2, we have

βG(P ) = βG′
1
(P1) + βG′

2
(P2)

≤ (|P1| − 2)/2 + τG′
1vu

+ (|P2| − 3)/2

= (|P | − 3)/3 + τGvu.

As z ∈ V (P ), we have constructed the desired Tutte path.

2.2 Proof of Theorem 1.2.1

We apply induction on n = |G|. By Lemma 2.1.1 and by symmetry, we may assume that

u is not incident with e and |G| = n ≥ 4, and the assertion holds for graphs on at most

n − 1 vertices. Let e = v′v′′ such that u, v′, v′′, v occur on C in clockwise order. We may

conclude the following by Lemma 2.1.3.

Claim 2.2.1. Neither {u, v′} nor {v′, v′′} is a cut in G.
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Moreover, by Lemma 2.1.2, we may assume that G has no 2-cut T ̸= {u, v} separating

e from {u, v}. Thus, by planarity, uCe is contained in a block of G−eCv, which is denoted

by H . (See Figure 2.3) Note that H ∼= K2 or H is 2-connected.

Claim 2.2.2. H is 2-connected.

Proof. For, suppose that H ∼= K2. Note that v′ must have degree 2 in G and G − v′ is

2-connected; for otherwise, there exists a vertex z ∈ V (v′′Cv) such that {v, z} is a 2-cut

in G separating e from {u, v}, contradicting Lemma 2.1.2. Let C ′ := v′′Cu + uv′′ be the

outer cycle of G′ := (G − v′) + uv′′, and let e′ := uv′′. Note that (G′, C ′) is a circuit

graph, τG′ue′ = 1 = τGue + 1/2, τG′e′v = τGev, and τG′vu = τGvu. Hence, by the induction

hypothesis, G′ has a C ′-Tutte path P ′ between u and v such that e′ ∈ E(P ′) and

βG′(P ′) ≤ (|P ′| − 6)/2 + τG′vu + τG′ue′ + τG′e′v

Now P := (P ′−e′)∪uv′v′′ is a C-Tutte path in G between u and v such that e ∈ E(P ) and

βG(P ) = βG′(P ′) ≤ (|P ′|−6)/2+τGvu+τGue+τGev = (|P |−6)/2+τGvu+τGue+τGev.

By Claim 2.2.2, let D denote the outer cycle of H . Our strategy is to use the induction

hypothesis to find a path in H and extend it to the desired path in G along eCv. Let

w ∈ V (vCu) such that wDv′ = wCv′ and, subject to this, wCv′ is maximal. By Lemma

2.1.4, we have the following claim.

Claim 2.2.3. H contains a D-Tutte path PH between u and v′ such that w ∈ V (PH) and

βH(PH) = (|PH | − 6)/2 + τGue + 3/2.

We wish to extend PH along eCv to the desired path P in G. Thus we need a useful

description of the structure of the part of G that lies between H and eCv. See Figure 2.3.
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Figure 2.3: The subgraph H of G and the bridges between eCv and H

Let B be the the set of (H ∪ eCv)-bridges of G. Then G = H ∪ eCv ∪ (
⋃

B∈B B). As

H is a block of G− eCv, |B ∩H| ≤ 1 for all B ∈ B.

For B1, B2 ∈ B with |B1∩H| = 1 = |B2∩H|, we denote by B1 ∼ B2 if V (B1∩H) =

V (B2∩H) ⊆ V (PH), or if there exists a PH-bridge B of H such that V (B1∩H)∪V (B2∩

H) ⊆ V (B − PH). Clearly, ∼ is an equivalence relation on B. Let Bi, i ∈ [m], be the

equivalence classes of B with respect to ∼, such that H ∩
(⋃

B∈Bi
B
)
, i ∈ [m], occur on D

in order from v′ to w, with v′ ∈ V (B) for all B ∈ B1 and w ∈ V (B′) for all B′ ∈ Bm. Let

ai, bi ∈ V (eCv) such that

(a) ai ∈ V (B) for some B ∈ Bi and bi ∈ V (B′) for some B′ ∈ Bi (possibly B = B′),

(b) v′′, ai, bi, v occur on eCv in order, and

(c) subject to (a) and (b), aiCbi is maximal.

Note that v′′ = a1 and bm = v. Let Ji denote the union of aiCbi, all members of Bi, those

(H ∪ eCv)-bridges of G whose attachments are all contained in aiCbi, and the PH-bridge

of H containing B ∩H for all B ∈ Bi.

For 1 < i < m, let Li denote the union of biCai+1 and those (eCv ∪ H)-bridges of

G whose attachments are all contained in biCai+1. Note that |Ji ∩ PH | ∈ {1, 2} for all

1 ≤ i ≤ m. Let
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• J1 be the set of all Ji, 1 < i < m, such that |Ji ∩ PH | = 1 and ai ̸= bi,

• J2 be the set of all Ji, 1 < i < m, such that |Ji ∩ PH | = 2, and

• L be the set of all Li, 1 < i < m.

By Lemma 2.1.2, we have |J1| = 2. Thus we have the following claim.

Claim 2.2.4. J1 has a path P1 = J1 such that βJ1(P1) = 0 = (|J1| − 1)/2− 1/2.

Claim 2.2.5. For Ji ∈ J1, Ji has an ai-bi path Pi such that Pi∪ (Ji∩PH) is an aiCbi-Tutte

subgraph of Ji and

βJi(Pi ∪ (Ji ∩ PH)) ≤


(|Pi| − 1)/2− 1, if eCv is good and |aiCbi| ≥ 3,

(|Pi| − 1)/2− 1/2, if eCv is good and |aiCbi| = 2,

(|Pi| − 1)/2, otherwise.

Proof. Let V (Ji∩PH) = {x}. Consider the plane graph J ′
i := Ji+aix with outer cycle Ci

consisting of aiCbi, the edge ei := xai, and the path in the outer walk of Ji between bi and

x not containing ai. Then (J ′
i , Ci) is a circuit graph. Note that τJ ′

ixei
= 1 and τJ ′

ibix
= 0.

Hence, by the induction hypothesis, J ′
i has a Ci-Tutte path P ′

i between x and bi such

that ei ∈ E(P ′
i ) and βJ ′

i
(P ′

i ) ≤ (|P ′
i | − 6)/2 + τJ ′

ieibi
+ 1. Note that τJ ′

ieibi
≤ 1. If eCv is

good, then τJ ′
ieibi

≤ 1/2 (as ai ̸= bi), and τJ ′
ieibi

= 0 if |aiCbi| ≥ 3. Let Pi := P ′
i − x. As

|P ′
i | = |Pi|+ 1, Pi gives the desired path.

Claim 2.2.6. For Ji ∈ J2, Ji has an ai-bi path Pi such that Pi∪ (Ji∩PH) is an aiCbi-Tutte

subgraph of J ′
i and

βJi(Pi ∪ (Ji ∩ PH)) ≤


(|Pi| − 1)/2, if eCv is good and ai ̸= bi,

(|Pi| − 1)/2 + 1, otherwise.
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Proof. If ai = bi, we let Pi = ai which gives the desired path. Now suppose ai ̸= bi. Let

V (Ji ∩ PH) = {x, y}, let J ′
i be the block of Ji − {x, y} containing aiCbi, and let Ci be the

outer cycle of J ′
i with aiCibi = aiCbi. We may further assume that v′, y, x, w occur on D

in clockwise order.

By planarity there exists a vertex z ∈ V (biCiai) \ {ai, bi} such that biCiz − z contains

no neighbor of y and zCiai − z contains no neighbor of x. By Lemma 2.1.4, J ′
i contains a

Tutte path Pi between ai and bi such that z ∈ V (Pi) and

βJ ′
i
(Pi) ≤ (|Pi| − 6)/2 + τJ ′

iaibi
+ 3/2.

As βJi(Pi) ≤ βJ ′
i
(Pi) + 1, and τJ ′

iaibi
= 0 if eCv is good, Pi is the desired Tutte path.

Claim 2.2.7. Jm has a path Pm between am and bm = v such that Pm+w is an amCw-Tutte

subgraph of Jm and

βJm(Pm + w) ≤


(|Pm| − 1)/2− 1 + τGvu, if eCv is good and |amCbm| ≥ 3,

(|Pm| − 1)/2− 1/2 + τGvu, if eCv is good and |amCbm| = 2,

(|Pm| − 1)/2 + τGvu, otherwise.

Proof. First, suppose am = bm. Then Pm = am gives the desired path.

Now assume am ̸= bm and consider the plane graph J ′
m := Jm + amw with outer cycle

Cm := amCw + amw. Then (J ′
m, Cm) is a circuit graph. Let em := amw. Note that

τJ ′
mbmw ≤ τGvu and τJ ′

mwem = 1.

Hence, by induction hypothesis, J ′
m has a Cm-Tutte path between bm and w such that

em ∈ E(P ′
m) and

βJ ′
m
(P ′

m) ≤ (|P ′
m| − 6)/2 + τGvu + 1 + τJ ′

membm

= (|P ′
m| − 2)/2− 1 + τGvu + τJ ′

membm .
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Note that τJ ′
membm ≤ 1/2 (when eCv is good) and τJ ′

membm ≤ 1 (when eCv is not good).

Furthermore if eCv if good and |amCbm| ≥ 3, then τJ ′
membm = 0. Hence, Pm = P ′

m − w

gives the desired path.

Next, we consider those (eCv∪H)-bridges of G with all attachments contained in eCv.

Claim 2.2.8. Li contains a biCai+1-Tutte path Qi from bi to ai+1 such that

βLi
(Qi) ≤


(|Qi| − 1)/2− 1, if |biCai+1| ≥ 3,

(|Qi| − 1)/2− 1/2, if |biCai+1| = 2,

(|Qi| − 1)/2, otherwise.

In particular, βLi
(Qi) ≤ max{0, (|Qi| − 1)/2− 1}.

Proof. If |biCai+1| ≤ 2 then let Qi := biCai+1; we see that βLi
(Qi) = 0. So suppose

|biCai+1| ≥ 3. Then consider the plane graph L′
i := Li + biai+1 with outer cycle Di :=

biCai+1 + ai+1bi. Note that (L′
i, Di) is a circuit graph. Choose an edge e′i ∈ E(biCai+1)

so that τL′
ibie

′
i
= 1/2. Note that τL′

iai+1bi = 0 and τL′
ie

′
iai+1

≤ 1. Then by induction

hypothesis, L′
i contains a Di-Tutte path Qi between bi and ai+1 such that e′i ∈ E(Qi) and

βL′
i
(Qi) ≤ (|Qi| − 6)/2 + 3/2 = (|Qi| − 1)/2− 1.

We now form the path P by taking the union of PH , Pi for i ∈ [m], and Qi for i ∈

[m− 1]. Clearly, P is between u and v and contains e.

It is easy to see that if B is a P -bridge of G then B is a PH-bridge of H , or a (Pi∪ (Ji∩

PH)-bridge of Ji, for some Ji ∈ Bi or a Qi-bridge of some Li. Thus, P is a C-Tutte path

in G between u and v containing e.

If we extend PH from v′ to v through J1, L1, J2, L2, . . . , Jm−1, Lm−1, Jm in order, we

see that

• J1 and H double count v′;
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• Jm and H ∪ (J1 ∪ L1) ∪ . . . ∪ (Jm−1 ∪ Lm−1) double count am;

• for 1 < i < m, Pi and PH ∪ (P1 ∪Q1) ∪ . . . ∪ (Pi−1 ∪Qi−1) double count ai.

• for 1 < i < m, Qi and PH ∪ (P1 ∪Q1) ∪ . . . ∪ (Pi−1 ∪Qi−1) ∪ Pi double count bi.

Note that for each Ji ∈ J2, the PH-bridge of H contained in Ji does not contribute to the

count of βG(P ). We calculate βG(P ) as follows.

βG(P ) = βH(PH) + βJ1(P1) + βJm(Pm + w) +
∑
Ji∈J1

βJi(Pi ∪ (Ji ∩ PH))+

∑
Ji∈J2

(βJi(Pi ∪ (Ji ∩ PH))− 1) +
m−1∑
i=1

βLi
(Qi).

Suppose eCv is not good. Then τGev = 1.Thus, by Claims 2.2.3, 2.2.4, 2.2.5, 2.2.6,

2.2.7, and 2.2.8, we have

βG(P ) ≤ ((|PH | − 6)/2 + τGue + 3/2) + ((|P1| − 1)/2− 1/2) + ((|Pm| − 1)/2 + τGvu)

+
∑

Ji∈J1∪J2

(|Pi| − 1)/2 +
∑
Li∈L

max{0, (|Qi| − 1)/2− 1}

≤ (|P | − 6)/2 + 1 + τGvu + τGue

= (|P | − 6)/2 + τGvu + τGue + τGev.

So suppose eCv is good. Let J ′
1 := {Ji ∈ J1 or i = m : |aiCbi| ≥ 3}, J ′′

1 := {Ji ∈

J1 or i = m : |aiCbi| = 2}, J ′
2 := {Ji ∈ J2 : ai ̸= bi}, J ′′

2 := {Ji ∈ J2 : ai = bi},

L′ := {Li ∈ L : |biCai+1| ≥ 3}, and L′′ := {Li ∈ L : |biCai+1| = 2}. Note then by

Claims 2.2.3, 2.2.4, 2.2.5, 2.2.6, 2.2.7, and 2.2.8 we have,

βG(P ) ≤ (|P | − 6)/2 + τGvu + τGue + 1− |J ′
1| − |J ′′

1 |/2− |J ′
2| − |L′| − |L′′|/2.

We may assume |J ′
1| = |J ′

2| = |L′| = 0 as otherwise (1.1) holds. If |eCv| = 2, then

τGev = 1/2 and if |eCv| ≥ 3, then τGev = 0. As |J ′′
1 | + |L′′| = |eCv| − 1 (follows from
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|J ′
1| = |J ′

2| = |L′| = 0), (1.1) holds and Theorem 1.2.1 follows.

We now apply Theorem 1.2.1 to recover the original technical theorem of Wigal and

Yu [68]. A challenge to their theorem was accounting for the vertices in the bridges of the

path. Care had to be taken to avoid double counting these vertices, as the path may need

to be extended through a bridge in a previous iteration of the induction. To handle this, a

contraction strategy is employed.

Corollary 2.2.9. [68] Let n ≥ 3 be an integer, let (G,C) be a circuit graph on n vertices,

let u, v ∈ V (C) be distinct, and let e ∈ E(C), such that u, e, v occur on C in clockwise

order. Then G has a C-Tutte path between u and v such that e ∈ E(P ) and

β(P ) ≤ (n− 6)/3 + (2τGvu + 2τGue + 2τGev)/3.

Proof. First suppose e = uv. Letting P := uv, we have that τGvu = 1, τGue = 1, and

τGev = 1. As βG(P ) = 1 and n ≥ 3, the inequality holds. Now suppose e ̸= uv and

|G| = 3. By symmetry, we may assume u is not incident with e. Let P := C − uv. As

βG(P ) = 0, τGvu = 0, τGue = 1/2, and τGev = 1, the inequality holds. Thus we may

assume e ̸= uv and |G| > 3 and we proceed with induction on n.

Claim 2.2.10. If (G1, G2) is a 2-separation in G such that u, v ∈ V (G1), e ∈ E(G1), and

V (G1 ∩G2) ⊆ V (C), then |G2| = 3.

Proof. For otherwise, let (G1, G2) be a 2-separation in G such that u, v ∈ V (G1), e ∈

E(G1), V (G1∩G2) ⊆ V (C), and |G2| > 3. Let V (G1∩G2) = {x, y} such that yCx ⊆ G1

and xCy ⊆ G2. Let G′
1 := G1 + {t, tx, ty}, where t is a new vertex and C1 := yCxty.

Then (G′
1, C1) is a circuit graph. We apply induction on G1 to find a Tutte path P1 in G1

between u and v such that e ∈ E(P1) and

βG′
1
(P1) ≤ (|G′

1| − 6)/3 + (2τG′
1vu

+ 2τG′
1ue

+ 2τG′
1ev

)/3
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If t ̸∈ V (P1), then let P := P1. As |G′
1| ≤ n, τG′

1vu
= τGvu, τG′

1ue
= τGue, and τG′

1ev
=

τGev, P is the desired Tutte path.

So suppose t ∈ V (P1). Let C2 := xCy + yx and G′
2 := G2 + xy. Note then (G′

2, C2)

is a circuit graph. As |xCy| ≥ 3, choose edge e′ ∈ E(xCy) such that τG′
2xe

≤ 1/2. As

τG′
2yx

= 0, by induction, G′
2 has a C2-Tutte path P2 between x and y such that e′ ∈ E(P2)

and

βG′
2
(P2) ≤ (|G′

2| − 6)/3 + (2τG′
2yx

+ 2τG′
2xe

′ + 2τG′
2e

′y)/3

= (|G′
2| − 3)/3

Let P := (P1 − t) ∪ P2. As |G′
1|+ |G′

2| = n+ 3 we have

βG(P ) = βG′
1
(P1) + βG′

2
(P2)

≤ (|G′
1| − 6)/3 + (2τG′

1vu
+ 2τG′

1ue
+ 2τG′

1ev
)/3 + (|G′

2| − 3)/3

= (|G′
1| − 6)/3 + (2τG′

1vu
+ 2τG′

1ue
+ 2τG′

1ev
)/3.

Claim 2.2.11. If there is a 3-separation (G1, G2) in G such that C ⊆ G1, then |G2| = 4.

Proof. Assume otherwise, and let (G1, G2) be such a separation that minimizes |V (G2)|+

|E(G2)|. Let V (G1 ∩G2) = {x, y, z}.

Let G′
1 be the graph with V (G′

1) = V (G1) ∪ {t} where t is a new vertex in the face of

G1 containing G2, and E(G′
1) = E(G1)∪{xt, yt, zt}. Note that (G′

1, C) is a circuit graph;

so by induction there exists a C-Tutte path P1 between u and v such that e ∈ E(P1) and

βG′
1
(P1) ≤ (|G′

1| − 6)/3 + (2τG′
1vu

+ 2τG′
1ue

+ 2τG′
1ev

)/3.

If t ̸∈ V (P1), we let P := P1. As τG′
1vu

= τGvu, τG′
1ue

= τGue, τG′
1ev

= τG′
1ev

, and
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|G′
1| < n, we have that P is the desired Tutte path.

Thus we may assume t ∈ V (P1). Without loss of generality we may assume xt, yt ∈

E(P1) and x, z, y appear on C2 in clockwise order.

Suppose z ∈ V (P ). Let G′
2 := G2+{xz, yz} and C2 be the outer cycle of G′

2 such that

xzy ⊆ C2. Then (G′
2, C2) is a circuit graph. By induction, as xC2z and yC2x are both good

and |yC2x| ≥ 3, there exists a Tutte path P2 in G′
2 between x and z such that yz ∈ E(P2)

and

βG′
2
(P2) ≤ (|G′

2| − 4)/3.

Let P = (P1 − t) ∪ (P2 − z). As |G′
1|+ |G′

2| = |G|+ 4, we have that

βG(P ) = βG′
1
(P1) + βG′

2
(P2)

≤ (|G′
1| − 6)/3 + (2τG′

1vu
+ 2τG′

1ue
+ 2τG′

1ev
)/3 + (|G′

2| − 4)/3

= (n− 6)/3 + (2τG′
1vu

+ 2τG′
1ue

+ 2τG′
1ev

)/3.

Now assume z ̸∈ V (P1). Let G′
2 be the block of G2 + xy − {xz, yz} containing x and

y and C2 be its outer cycle. If z ∈ V (G′
2) we let z′ := z, otherwise we let z′ ∈ V (G2) be

the cut vertex of G2 + xy separating z from x and y. We may assume x, z′, y appear on C2

in clockwise order.

First suppose z′ ̸= z. By Lemma 2.1.4, G′
2 has a C2-Tutte path P2 between x and y

such that z′ ∈ V (P2) and

βG′
2
(P2) ≤ (|P2| − 3)/2.

Note βG′
2
(P2) + |P2| = |G′

2| as otherwise we could find a 3-cut contradicting the choice of
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(G1, G2), the minimality of |V (G2)|+ |E(G2)|. Thus

|G′
2| = |P2|+ βG′

2
(P2) ≤ (3|P2| − 3)/2.

Thus (2|G′
2|+3)/3 ≤ |P2| and βG′

2
(P2) = |G′

2|−|P2| ≤ (|G′
2|−3)/3. Let P = (P1−t)∪P2.

As |G′
1|+ |G′

2| = |G|+ 3 (as z ̸= z′), we have

βG(P ) = βG′
1
(P1) + βG′

2
(P2)

≤ (|G′
1| − 6)/3 + (2τG′

1vu
+ 2τG′

1ue
+ 2τG′

1ev
)/3 + (|G′

2| − 3)/3

= (n− 6)/3 + (2τGvu + 2τGue + 2τGev)/3.

Now suppose z = z′. As xz, yz ̸∈ E(G′
2), there is a choice of e′ ∈ E(C2) such that e′

contains z′ and τG′
2e

′y = 0. By Theorem 1.2.1, G′
2 has a C2-Tutte path P2 between x and y

such that e′ ∈ E(P2) and

βG′
2
(P2) ≤ (|P2| − 4)/2.

Again, by our choice of (G1, G2), we have βG′
2
(P2)+|P2| = |G′

2| and |G′
2| ≤ (3|P2|−4)/2.

In particular (2|G′
2| + 4)/3 ≤ |P2| and βG′

2
(P2) = |G′

2| − |P2| ≤ (|G′
2| − 4)/3. Letting

P = (P1 − t) ∪ P2, as |G′
1|+ |G′

2| = |G|+ 4, we have

βG(P ) = βG′
1
(P1) + βG′

2
(P2)

≤ (|G′
1| − 6)/3 + (2τG′

1vu
+ 2τG′

1ue
+ 2τG′

1ev
)/3 + (|G′

2| − 4)/3

= (n− 6)/3 + (2τGvu + 2τGue + 2τGev)/3.

Let (G,C) be a circuit graph on n ≥ 3 vertices. By Theorem 1.2.1, there exists a
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C-Tutte path P between u and v such that

βG(P ) ≤ (|P | − 6)/2 + τGvu + τGue + τGev.

By Claims 2.2.10 and 2.2.11 we have n = |P |+ βG(P ). It follows,

n = |P |+ βG(P ) ≤ (3|P | − 6)/2 + τGvu + τGue + τGev.

Solving for |P | we have

(2n+ 6)/3− 2(τGvu + τGue + τGev)/3 ≤ |P |.

Thus we have

βG(P ) = n− |P | ≤ (n− 6)/3 + (2τGvu + 2τGue + 2τGev)/3.

2.3 Essentially 4-connected Planar Graphs

We now apply Corollary 2.2.9 to obtain sharp circumference bounds for essentially 4-

connected graphs.

Theorem 2.3.1. [68] Let n ≥ 6 be an integer and let G be any essentially 4-connected

n-vertex planar graph. Then the circumference of G is at least ⌈(2n+ 6)/3⌉.

Proof. First suppose G is 4-connected. Fix a planar drawing of G and let T be the outer

cycle of G. Let uv, e ∈ E(T ) be distinct. By applying Corollary 2.2.9, G has a T -Tutte

path P between u and v such that e ∈ E(P ). As G is 4-connected, βG(P ) = 0, so P is

in fact a Hamiltonian path. Hence, P + uv is a Hamiltonian cycle in G and has length n,

which is at least (2n+ 6)/3 (as n ≥ 6).
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Hence, we may assume G is not 4-connected. Then, since G is essentially 4-connected,

there exists x ∈ V (G) such that x has degree 3 in G. So let NG(x) = {u, v, w} and let

H := G− x and assume that H is a plane graph with u, v, w on the outer cycle C of H in

counter clockwise order. Note that (H,C) is a circuit graph.

Suppose two of |uCw|, |wCv|, |vCu| is at least 3. Without loss of generality, we may

assume that |uCw| ≥ 3 and |wCv| ≥ 3. Let e ∈ E(uCw) be incident with w. Then

τHvu = 0, τHue ≤ 1/2, and τHev = 0. Hence by prior Theorem, H has a C-Tutte path

between u and v such that e ∈ E(P ) and βH(P ) ≤ (n − 7)/2 + 1/3 = (n − 6)/3. Thus,

Q := P ∪ uxv is a Tutte cycle in G such that βG(Q) ≤ (n − 6)/3. Since G is essentially

4-connected, every Q-bridges is a K1,3. Hence |Q| ≥ n− (n− 6)/3 = (2n+ 6)/3.

So we may assume that |wCv| = |vCu| = 2. Consider the plane graph K := H − wv

whose outer cycle D contains vCw. Since G is essentially 4-connected, K is 2-connected;

so (K,D) is a circuit graph. We can choose e ∈ E(wDv) incident with w. Now τKvu = 0,

τKue ≤ 1/2, and τKev ≤ 1/2.

If τKue = 0 or τKev = 0, then by Corollary 2.2.9, K has a D-Tutte path P between u

and v such that e ∈ E(P ) and βK(P ) ≤ (n−7)/3+1/3 = (n−6)/3. Thus Q := P ∪uxv

is a cycle in G with |Q| ≥ n− (n− 6)/3 = (2n+ 6)/3.

So assume τKue = τKev = 1/2 and, hence, |wDv| = 3 and |uDw| = 2. Since

n ≥ 6 and G is essentially 4-connccted, one of {v, w} has a neighbor inside D, say w

by symmetry. Now consider the plane graph J := H − uw, which is 2-connected as G

is essentially 4-connected. Let F denote the outer cycle of J , which contains {u, v, w}.

Clearly, (J, F ) is a circuit graph. Choose f ∈ E(uFw) incident with w. Then τJuf ≤ 1/2,

and τJfv = 0, and τJvu = 0. Hence, by Corollary 2.2.9, J has an F -Tutte path between u

and v such that f ∈ E(P ) and βJ(P ) ≤ (n−7)/3+1/3 = (n−6)/3. Thus Q := P ∪uxv

is a cycle in G with |Q| ≥ n− (n− 6)/3 = (2n+ 6)/3.

Note that we need n ≥ 6 in Theorem 2.3.1, however, when n ≥ 5 the graph G is
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Hamiltonian. The bound in Theorem 2.3.1 is best possible in the following sense. Take a

4-connected triangulation T on k vertices, and inside each face of T add a new vertex and

three edges from that new vertex to the three vertices in the boundary of that face. The

resulting, graph, say G, has n := 3k − 4 vertices. Now take an arbitrary cycle C in G.

For each x ∈ V (C) with degree three in G, we delete x from C and add the edge of G

between the two neighbors of x in C. The results in a cycle in T , say D. Clearly, |D| ≤ k;

which implies |C| ≤ 2k. Hence, the circumference of G is at most 2k = (2n + 4)/3 =

⌈(2n+ 6)/3⌉.
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CHAPTER 3

EVEN COVERS

In this chapter, we provide results on even covers in subcubic graphs and apply them to the

travelling salesperson problem. This chapter is joint work with Youngho Yoo and Xingxing

Yu [66].

3.1 Subcubic Chains

In order to help with induction, we consider even covers which contain or avoid a specified

edge. Let G be a graph and let e ∈ E(G). We write E(G, e) to denote the set of even

covers of G containing e, and Ê(G, e) to denote the set of even covers of G not containing

e. Define

exc(G, e) := min
F∈E(G,e)

exc(F )− 2

êxc(G, e) := min
F∈Ê(G,e)

exc(F )

Clearly, we have exc(G) = min{exc(G, e) + 2, êxc(G, e)} for any edge e ∈ E(G). The

“−2” in the definition of exc(G, e) leads to a natural interpretation of the quantities δ(G, e)

and δ̂(G, e) defined below, and also results in simpler calculations as it accounts for the fact

that the cycle C of F containing e will often only be used as a path C− e as part of a larger

cycle (see Propositions 3.1.1 and 3.1.2).

To prove (1.3), it will be convenient to define the following parameters for a graph G
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and an edge e ∈ E(G):

δ(G, e) := exc(G, e)− n(G) + n2(G)

4
,

δ̂(G, e) := êxc(G, e)− n(G) + n2(G)

4
.

Note that if every vertex of G has degree 2 or 3 (for instance, if G is subcubic and

2-connected), then δ(G, e) and δ̂(G, e) are always half-integral since n(G) + n2(G) =

(n(G)− n2(G)) + 2n2(G) where (n(G)− n2(G)) is the number of vertices of odd degree

in G, which is always even.

A subcubic chain C is a simple connected subcubic graph, written as an alternating se-

quence C = xe0B1e1B2 . . . Bkeky for some nonnegative integer k, satisfying the following

properties (see Figure 3.1):

• {e0, . . . , ek} is the set of cut-edges of C,

• {B0, B1, . . . , Bk, Bk+1} is the set of connected components of C − {e0, . . . , ek},

where V (B0) = {x} and V (Bk+1) = {y},

• Bi is either a single vertex or 2-connected for all i ∈ [k], and

• each ei has one endpoint in Bi and one endpoint in Bi+1 for all i = 0, . . . , k.

Figure 3.1: A subcubic chain

We say that C has end points x, y and has end edges e0 and ek. A subcubic chain is

trivial if k = 0 (that is, C is an edge xy), and nontrivial otherwise.

Let C = xe0B1e1B2 . . . Bkeky be a nontrivial subcubic chain. For i ∈ [k], let xi denote

the endpoint of ei−1 in Bi and let yi denote the endpoint of ei in Bi. (Note that xi ̸= yi
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when n(Bi) ̸= 1, as C is subcubic.) We define Bi = Bi + ei where ei = xiyi, and

C = C − {x, y} + eC where eC = x1yk. We call each (Bi, ei) a chain-block of C, and C

the closure of C. Note that the closure of a nontrivial subcubic chain C is a subcubic graph

with no cut-vertex such that C − eC is simple. If C is a trivial subcubic chain, we define

exc(C, eC) = êxc(C, eC) = δ(C, eC) = δ̂(C, eC) = 0.

Proposition 3.1.1. Let C = xe0B1e1B2 . . . Bkeky be a subcubic chain, and let {(Bi, ei) :

i ∈ [k]} denote the chain-blocks of C. Then

• exc(C, eC) =
∑k

i=1 exc(Bi, ei),

• êxc(C, eC) =
∑k

i=1 êxc(Bi, ei),

• δ(C, eC) =
∑k

i=1 δ(Bi, ei), and

• δ̂(C, eC) =
∑k

i=1 δ̂(Bi, ei).

Proof. If C is trivial then the proposition is true by definition (an empty sum is defined to

be 0), so we may assume that C is nontrivial. Note that a cycle in C contains eC if and

only if it contains all of e1, . . . , ek−1. This gives a natural bijective correspondence between

even covers F ∈ E(C, eC) and tuples of even covers (F1, . . . , Fk) where Fi ∈ E(Bi, ei)

for each i ∈ [k]. Indeed, this correspondence is obtained by “splitting” the cycle D of F

containing eC into k cycles, (D ∩ Bi) + ei for i ∈ [k]. With this correspondence, we have

exc(F ) = 2 +
∑k

i=1(exc(Fi)− 2). Hence,

exc(C, eC) = min
F∈E(C,eC)

exc(F )− 2

=
k∑

i=1

min
Fi∈E(Bi,ei)

(exc(Fi)− 2)

=
k∑

i=1

exc(Bi, ei).

Since n(C) =
∑k

i=1 n(Bi) and n2(C) =
∑k

i=1 n2(Bi), this also implies δ(C, eC) =∑k
i=1 δ(Bi, ei).
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Similarly, there is a natural bijective correspondence between even covers F ∈ Ê(C, eC)

and tuples (F1, . . . , Fk) where Fi ∈ Ê(Bi, ei) for each i ∈ [k]. That is, Fi is the restriction

of F on Bi for all i ∈ [k]. Moreover, exc(F ) =
∑k

i=1 exc(Fi). Hence,

êxc(C, eC) = min
F∈Ê(C,eC)

exc(F )

=
k∑

i=1

min
Fi∈Ê(Bi,ei)

exc(Fi)

=
k∑

i=1

êxc(Bi, ei).

This similarly gives δ̂(C, eC) =
∑k

i=1 δ̂(Bi, ei).

The parameters δ(C, eC) and δ̂(C, eC) can be interpreted as the “difference” in the δ

or δ̂ of the overall graph G made by the presence of the subcubic chain C compared to a

trivial chain (a single edge). This is formalized in the next proposition.

Let G be a graph containing a nontrivial subcubic chain C = xe0B1 . . . Bkeky such

that C − {x, y} is a connected component of G − {e0, ek}. In this case, we say that C is

a subcubic chain of G. If C is a subcubic chain of G, we write G/C to denote the graph

obtained by suppressing V (C) \ {x, y}, and write eG/C to denote the resulting edge. We

say that G/C is obtained from G by suppressing C. A cycle in G containing the edge e0

(hence all of {e0, . . . , ek}) is said to be a cycle through C, and an even cover through C is

an even cover of G containing a cycle through C.

Proposition 3.1.2. Let C be a subcubic chain of a graph G, and let e be a cut-edge of C.

Then δ(G, e) = δ(G/C, eG/C) + δ(C, eC) and δ̂(G, e) = δ̂(G/C, eG/C) + δ̂(C, eC).

Proof. Given an even cover F ∈ E(G, e), e is contained in some cycle D in F . By splitting

D into two cycles (D∩G/C)+eG/C and (D∩C)+eC , we obtain from F two even covers

F ′ ∈ E(G/C, eG/C) and FC ∈ E(C, eC) satisfying exc(F ) = exc(F ′) + exc(FC)− 2. This
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bijective correspondence gives

exc(G, e) = min
F∈E(G,e)

exc(F )− 2

= min
F ′∈E(G/C,eG/C)

(exc(F ′)− 2) + min
FC∈E(C,eC)

(exc(FC)− 2)

= exc(G/C, eG/C) + exc(C, eC).

Similarly, for any even cover F ∈ Ê(G, e), its restriction on G/C is in Ê(G/C, eG/C) and

its restriction on C is in Ê(C, eC); and we have êxc(G, e) = êxc(G/C, eG/C)+ êxc(C, eC).

Since n(G) = n(G/C)+n(C) and n2(G) = n2(G/C)+n2(C), the proposition follows

from the definitions of δ and δ̂.

We will show in Theorem 3.1.4 that δ(G, e) + δ̂(G, e) ≤ 0 for every 2-connected

subcubic graph G and every edge e ∈ E(G) for which G − e is simple. If δ(G, e) +

δ̂(G, e) = 0, then we say that (G, e) is tight. A subcubic chain C is tight if its closure

(C, eC) is tight.

The next proposition states that a subcubic chain is tight if and only if all of its chain-

blocks are tight.

Proposition 3.1.3. Let C = xe0B1e1B2 . . . Bkeky be a subcubic chain, and assume δ(Bi, ei)+

δ̂(Bi, ei) ≤ 0 for all i. Then δ(C, eC) + δ̂(C, eC) ≤ 0, with equality if and only if

δ(Bi, ei) + δ̂(Bi, ei) = 0 for all i ∈ [k].

Proof. Since δ(Bi, ei) + δ̂(Bi, ei) ≤ 0 for all i, we have by Proposition 3.1.1,

δ(C, eC) =
k∑

j=1

δ(Bi, ei) ≤
k∑

j=1

(−δ̂(Bi, ei)) = −δ̂(C, eC).

Hence, δ(C, eC) + δ̂(C, eC) ≤ 0, with equality if and only if δ(Bi, ei) + δ̂(Bi, ei) = 0 for

all i.
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Figure 3.2: A rooted θ-chain Figure 3.3: A minimal θ-chain

We say that a subcubic chain C is minimal if it is tight and δ(C, eC) = −1
2
, and that C

is near-minimal if it is tight and δ(C, eC) ∈ {−1
2
,−1}. Two subcubic chains C1 and C2

are balanced if δ(C1, eC1) = δ(C2, eC2).

A θ-chain is a graph G that is the union of three internally disjoint subcubic chains

C1, C2, C3 with common endpoints. We call C1, C2, C3 the chains of G. Note that the

choices of the three chains C1, C2, C3 may not be unique (consider the graph obtained from

two disjoint 4-cycles by adding two edges joining them so that the endpoints of the two

edges are nonadjacent in each 4-cycle). A rooted θ-chain is a pair (G, e) where G is a

graph and e = uv ∈ E(G) such that G− e is the union of two internally disjoint subcubic

chains C1, C2 with common endpoints {u, v}. We call C1, C2 the chains of (G, e). See

Figure 3.2.

A (rooted) θ-chain is balanced if all pairs of its chains are balanced, tight if the closures

of its chains are all tight, and (near) minimal if all of its chains are (near) minimal. Note that

a (near) minimal (rooted) θ-chain is also balanced and tight by definition. See Figure 3.3.

We can now state our main result, which immediately implies (1.3). For inductive

purposes, we allow the graph G to be a loop e on a single vertex and we also allow one

edge of G− e to be parallel to e. In all cases however, G− e is a simple subcubic graph.

Theorem 3.1.4. Let G be a 2-connected subcubic graph and let e = uv be an edge of G

such that G− e is simple. Then the following statements hold:

(T1) δ(G, e) ≤ −1
2
, with equality if and only if either G is a loop or (G, e) is a balanced

tight rooted θ-chain.
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(T2) If G − e is 2-connected, then δ̂(G, e) ≤ 3
2
, with equality if and only if G − e is a

minimal θ-chain.

(T3) If δ(G, e) = −1, then either

(a) G ∼= K4, or

(b) e has a parallel edge, and suppressing {u, v} to an edge e′ results in a graph

G′ such that either G′ is a loop or (G′, e′) is a near-minimal rooted θ-chain, or

(c) there exists e′ ∈ E(G) such that {e, e′} is a 2-edge-cut in G, and suppressing

either subcubic chain C of G with end edges e, e′ yields either a loop or a

balanced tight rooted θ-chain (G/C, eG/C), or

(d) (G, e) is a rooted θ-chain such that mini∈[2]

(
δ(Ci, eCi

) + δ̂(C3−i, eC3−i
)
)

=

−1
2
.

(T4) δ(G, e) + δ̂(G, e) ≤ 0.

One immediate consequence of Theorem 3.1.4 is that if C is a subcubic chain, then

δ(C, eC) ≤ −1
2

unless C is trivial, in which case δ(C, eC) = 0 by definition. In particular,

δ(G, e) ≤ −1
2

for every nonempty 2-connected subcubic graph G and e ∈ E(G) such that

G− e is simple. Hence, if C is a minimal subcubic chain, then by Proposition 3.1.1, it has

exactly one chain-block (B, eB), and this chain-block satisfies δ(B, eB) = −1
2
.

3.2 Properties of θ-chains

In this section, we derive useful properties of balanced, tight, or minimal θ-chains assuming

Theorem 3.1.4 for smaller graphs. We begin by proving statements (T1) and (T3) of The-

orem 3.1.4, assuming Theorem 3.1.4 for smaller graphs, for the special case where (G, e)

is a rooted θ-chain (equivalently, G is simple and {u, v} forms a cut in G). The proof is a

relatively straightforward but illustrative demonstration of our techniques.
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Lemma 3.2.1. Let (G, e) be a simple rooted θ-chain, and let C1, C2 denote the two chains

of (G, e). Assume that Theorem 3.1.4 holds for graphs with fewer than n(G) vertices. Then

(i) δ(G, e) = −1
2
+ mini∈[2]

(
δ(Ci, eCi

) + δ̂(C3−i, eC3−i
)
)
≤ −1

2
, with equality if and

only if (G, e) is a balanced tight rooted θ-chain,

(ii) δ̂(G, e) ≤ 3
2
+ δ(C1, eC1) + δ(C2, eC2) ≤ 1

2
,

(iii) (δ(G, e), δ̂(G, e)) = (−1
2
, 1
2
) if and only if (G, e) is a minimal rooted θ-chain, and

(iv) if δ(G, e) = −1 then mini∈[2]

(
δ(Ci, eCi

) + δ̂(C3−i, eC3−i
)
)
= −1

2
.

Proof. An even cover F ∈ E(G, e) corresponds to a pair (F1, F2) where Fi ∈ E(Ci) for

each i ∈ [2] and Fi ∈ E(Ci, eCi
) for exactly one i ∈ [2]. This correspondence gives

exc(F ) = exc(F1) + exc(F2). Since n(G) = n(C1) + n(C2) + 2 and n2(G) = n2(C1) +

n2(C2), we have

exc(G, e) = min
F∈E(G,e)

exc(F )− 2

= min
i∈[2]

(
min

Fi∈E(Ci,eCi
)
(exc(Fi)− 2) + min

F3−i∈Ê(C3−i,eC3−i
)
exc(F3−i)

)

= min
i∈[2]

(
exc(Ci, eCi

) + êxc(C3−i, eC3−i
)
)

= min
i∈[2]

(
n(Ci) + n2(Ci)

4
+ δ(Ci, eCi

) +
n(C3−i) + n2(C3−i)

4
+ δ̂(C3−i, eC3−i

)

)
= min

i∈[2]

(
n(G) + n2(G)

4
− 1

2
+ δ(Ci, eCi

) + δ(C3−i, eC3−i
)

)
.

Therefore,

δ(G, e) = −1

2
+ min

i∈[2]

(
δ(Ci, eCi

) + δ̂(C3−i, eC3−i
)
)
, (3.1)

whence for i ∈ [2],
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δ(G, e) ≤ −1

2
+ δ(Ci, eCi

) + δ̂(C3−i, eC3−i
). (3.2)

By assumption, Theorem 3.1.4 holds for (Ci, eCi
); so δ(Ci, eCi

) + δ̂(Ci, eCi
) ≤ 0 for each

i ∈ [2]. Adding the two inequalities of (3.2) gives

2δ(G, e) ≤ −1 +
∑
i∈[2]

(
δ(Ci, eCi

) + δ̂(Ci, eCi
)
)
≤ −1.

Hence,

δ(G, e) ≤ −1

2
. (3.3)

Moreover, δ(G, e) = −1
2

if and only if all of the above inequalities are tight, which means

(C1, eC1) and (C2, eC2) are tight, and

0 = δ(C1, eC1) + δ̂(C2, eC2) = δ(C1, eC1)− δ(C2, eC2).

In other words, C1, C2 are balanced. Together with (3.1) and (3.3), this proves (i).

If Fi ∈ E(Ci, eCi
) for each i ∈ [2] then, by merging the cycles in Fi containing eCi

for

i ∈ [2], we obtain an even cover F ∈ Ê(G, e) with exc(F ) = exc(F1) + exc(F2)− 2. So

êxc(G, e) ≤ min
F∈Ê(G,e)

exc(F )

≤ min
F1∈E(C1,eC1

)
exc(F1) + min

F2∈E(C2,eC2
)
(exc(F2)− 2)

= (exc(C1, eC1) + 2) + exc(C2, eC2)

=
n(C1) + n2(C1)

4
+ δ(C1, eC1) +

n(C2) + n2(C2)

4
+ δ(C2, eC2) + 2

=
n(G) + n2(G)

4
+

3

2
+ δ(C1, eC1) + δ(C2, eC2).

38



Hence,

δ̂(G, e) ≤ 3

2
+ δ(C1, eC1) + δ(C2, eC2).

Since G is simple, each Ci is a nontrivial chain; so δ(Ci, eCi
) ≤ −1

2
by the assumption that

Theorem 3.1.4 holds for (Ci, eCi
). This gives δ̂(G, e) ≤ 1

2
and proves (ii).

To prove (iii), suppose (δ(G, e), δ̂(G, e)) = (−1
2
, 1
2
). Then δ(C1, eC1) + δ(C2, eC2) =

−1 by (ii). Since δ(Ci, eCi
) ≤ −1

2
for i ∈ [2] (by assumption), δ(Ci, eCi

) = −1
2

for each

i ∈ [2]. Moreover, each (Ci, eCi
) is tight (by (i)), so (G, e) is a minimal rooted θ-chain.

Finally, note that (iv) follows from (i).

The next lemma says that given a choice of adding an edge uv1 or uv2 to a 2-connected

subcubic graph Z, the two quantities δ(Z + uv1, uv1) and δ(Z + uv2, uv2) cannot both be

large.

Lemma 3.2.2. Let Z be a 2-connected simple subcubic graph and let u, v1, v2 be three

distinct vertices of degree 2 in Z. Assume Theorem 3.1.4 holds for graphs with at most

n(Z) vertices. Then δ(Z + uv1, uv1) + δ(Z + uv2, uv2) ≤ −2.

Proof. By the assumption that Theorem 3.1.4 holds for graphs with at most n(Z) vertices,

we have δ(Z+uvi, uvi) ≤ −1
2

for each i ∈ [2], with equality if and only if (Z+uvi, uvi) is

a balanced tight rooted θ-chain. If both δ(Z + uv1, uv1) ≤ −1 and δ(Z + uv2, uv2) ≤ −1,

then there is nothing to prove. So we may assume by symmetry that δ(Z+uv1, uv1) = −1
2
;

thus (Z + uv1, uv1) is a balanced tight rooted θ-chain. Note that it suffices to show that

δ(Z + uv2, uv2) ≤ −3
2
.

Let C1, C2 denote the two chains of (Z + uv1, uv1). Let us assume without loss of

generality that v2 ∈ V (C1). Write C1 = v1e0B1e1B2 . . . Bkeku (where k ≥ 1) and write

its chain-blocks (Bi, ei) for all i ∈ [k]. Since C1, C2 are balanced, we have δ(C1, eC1) =

δ(C2, eC2), and since they are both tight, we have δ(Ci, eCi
) + δ̂(Ci, eCi

) = 0 for i ∈ [2].
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So by Proposition 3.1.3 and the assumption that Theorem 3.1.4 holds for each (Bi, ei), we

have

δ(Bi, ei) + δ̂(Bi, ei) = 0 for all i ∈ [k]. (3.4)

Let ℓ ∈ [k] be the unique index such that v2 ∈ Bℓ. (Note ℓ is well defined as Z is subcubic

and v2 has degree 2 in Z.) Let v′ denote the vertex of Bℓ incident with eℓ−1.

Then there is an even cover F ∈ E(Z+uv2, uv2) obtained from a tuple (F ′, F1, . . . , Fk)

where F ′ ∈ E(C2, eC2), Fi ∈ E(Bi, ei) for each i ∈ [ℓ − 1], Fℓ ∈ E(Bℓ + v′v2, v
′v2),

and Fj ∈ Ê(Bj, ej) for each j = ℓ + 1, . . . , k. This gives exc(F ) − 2 = (exc(F ′) −

2) +
∑ℓ

i=1(exc(Fi) − 2) +
∑k

j=ℓ+1 exc(Fj). Moreover, since n(Bℓ + v′v2) = n(Bℓ) and

n2(Bℓ + v′v2) = n2(Bℓ), we have

n(Z + uv2) = 2 + n(C2) +
ℓ−1∑
i=1

n(Bi) + n(Bℓ + v′v2) +
k∑

j=ℓ+1

n(Bj),

n2(Z + uv2) = n2(C2) +
ℓ−1∑
i=1

n2(Bi) + n2(Bℓ + v′v2) +
k∑

j=ℓ+1

n2(Bj).

This gives

exc(Z + uv2, uv2) ≤ exc(C2, eC2) +
ℓ−1∑
i=1

exc(Bi, ei)

+ exc(Bℓ + v′v2, v
′v2) +

k∑
j=ℓ+1

êxc(Bj, ej)

=
n(Z + uv2) + n2(Z + uv2)

4
− 1

2
+ δ(C2, eC2) +

ℓ−1∑
i=1

δ(Bi, ei)

+ δ(Bℓ + v′v2, v
′v2) +

k∑
j=ℓ+1

δ̂(Bj, ej),

whence

δ(Z + uv2, uv2) ≤ −1

2
+ δ(C2, eC2) +

ℓ−1∑
i=1

δ(Bi, ei) + δ(Bℓ + v′v2, v
′v2) +

k∑
j=ℓ+1

δ̂(Bj, e
j).
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Note that êxc(Bℓ, eℓ) = êxc(Bℓ + v′v2, v
′v2) since both quantities are equal to the

minimum excess of an even cover of Bℓ. This implies δ̂(Bℓ, eℓ) = δ̂(Bℓ + v′v2, v
′v2).

Using (3.4) and that δ(Bℓ+ v′v2, v
′v2)+ δ̂(Bℓ+ v′v2, v

′v2) ≤ 0 as Theorem 3.1.4 holds for

(Bℓ + v′v2, v
′v2) (by assumption), we have

δ(Z + uv2, uv2) ≤ −1

2
+ δ(C2, eC2) +

ℓ−1∑
i=1

(
− δ̂(Bi, ei)

)
+
(
− δ̂(Bℓ + v′v2, v

′v2)
)
+

k∑
j=ℓ+1

δ̂(Bj, ej)

= −1

2
+ δ(C2, eC2) +

ℓ−1∑
i=1

(
− δ̂(Bi, ei)

)
+
(
− δ̂(Bℓ, eℓ)

)
+

k∑
j=ℓ+1

δ̂(Bj, ej)

= −1

2
+ δ(C2, eC2) +

k∑
j=1

δ̂(Bj, ej)− 2
ℓ∑

j=1

δ̂(Bi, ei)

= −1

2
+ δ(C2, eC2) + δ̂(C1, eC1)− 2

ℓ∑
j=1

δ̂(Bj, ej)

(by Proposition 3.1.1)

= −1

2
− 2

ℓ∑
j=1

δ̂(Bj, ej) (as C1 and C2 are balanced and tight)

≤ −3

2
,

since −δ̂(Bj, ej) = δ(Bj, ej) ≤ −1/2 for all j ∈ [k] by (3.4) and the assumption that

Theorem 3.1.4 holds for (Bj, ej).

We can now prove the following lemma for θ-chains.

Lemma 3.2.3. Let G be a subcubic graph with e = uv ∈ E(G) such that G − e is

simple and 2-connected. Assume that Theorem 3.1.4 holds for graphs with fewer than

n(G) vertices. Let Gu be the graph obtained from G− e by suppressing u into an edge fu,

and assume that (Gu, fu) is a rooted θ-chain. Then

(i) δ̂(G, e) ≤ 3
2
, with equality if and only if G − e is a minimal θ-chain whose three
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minimal chains can be chosen to have common endpoints N(u) \ {v},

(ii) δ(G, e) ≤ −3
2
, and

(iii) (δ(G, e), δ̂(G, e)) = (−3
2
, 3
2
) if and only if G−e is a minimal θ-chain and e joins two

nonadjacent vertices of a 4-cycle in G− e.

Proof. Let N(u) \ {v} = {x, y}, the set of endpoints of fu. Let C1, C2 denote the two

chains of (Gu, fu) with common endpoints {x, y}, and let C3 denote the subcubic chain

x(xu)u(uy)y. Note that n(G) = 2 +
∑3

i=1 n(Ci), n2(G) = −2 +
∑3

i=1 n2(Ci) (since the

Ci’s do not account for the edge e), and C3 is a loop. Let i1, i2, i3 be a permutation of [3]

such that δ(Ci1 , eCi1
) ≤ δ(Ci2 , eCi2

) ≤ δ(Ci3 , eCi3
).

Consider a triple (F1, F2, F3) such that Fi1 ∈ E(Ci1 , eCi1
), Fi2 ∈ E(Ci2 , eCi2

), and

Fi3 ∈ Ê(Ci3 , eCi3
). Let F ∈ Ê(G, e) be obtained from F1 ∪ F2 ∪ F3 by merging the cycles

in Fi1 , Fi2 through eCi1
, eCi2

. Then exc(F )−2 = (exc(Fi1)−2)+(exc(Fi2)−2)+exc(Fi3);

so

êxc(G, e)− 2 = exc(Ci1 , eCi1
) + exc(Ci2 , eCi2

) + êxc(Ci3 , eCi3
)

=
n(G) + n2(G)

4
+ δ(Ci1 , eCi1

) + δ(Ci2 , eCi2
) + δ̂(Ci3 , eCi3

).

Since Theorem 3.1.4 holds for (Ci, eCi
) for each i ∈ [3] (by assumption), we have

δ̂(Ci3 , eCi3
) ≤ −δ(Ci3 , eCi3

) ≤ −δ(Ci2 , eCi2
)

and δ(Ci, eCi
) ≤ −1

2
for i ∈ [3], which gives

êxc(G, e)− 2 ≤ n(G) + n2(G)

4
+ δ(Ci1 , eCi1

) ≤ n(G) + n2(G)

4
− 1

2
.

Therefore, êxc(G, e) ≤ n(G)+n2(G)
4

+ 3
2
, and δ̂(G, e) ≤ 3

2
.

Suppose δ̂(G, e) = 3
2
. Then the above inequalities hold with equality. Hence, −1

2
=
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δ(Ci1 , eCi1
) = δ(Ci2 , eCi2

) = δ(Ci3 , eCi3
). Since Theorem 3.1.4 holds for all (Ci, eCi

) (by

assumption), (Ci, eCi
) is tight (hence minimal) for all i ∈ [3]. Therefore, G−e is a minimal

θ-chain with its three chains having common endpoints N(u) \ {v}.

Now suppose G − e is a minimal θ-chain with the three minimal chains C1, C2, C3

with common endpoints N(u) \ {v}. Let F ∈ Ê(G, e). If F contains a cycle through

two of C1, C2, C3, then the above argument shows exc(F ) = n(G)+n2(G)
4

+ 3
2
. So we just

need to show that if F does not contain a cycle through any of C1, C2, C3, then exc(F ) ≥
n(G)+n2(G)

4
+ 3

2
. Indeed, such F when restricted to (Ci, eCi

) for i ∈ [3] gives a triple

(F1, F2, F3) such that Fi ∈ Ê(Ci, eCi
) for each i ∈ [3], and exc(F ) = 2 +

∑3
i=1 exc(Fi)

(since the two vertices of N(u) \ {v} are isolated in F ). So

exc(F ) ≥ 2 +
3∑

i=1

êxc(Ci, eCi
)

= 2 +
3∑

i=1

(
n(Ci) + n2(Ci)

4
+ δ̂(Ci, eCi

)

)

=
n(G) + n2(G)

4
+ 2 +

3∑
i=1

δ̂(Ci, eCi
)

=
n(G) + n2(G)

4
+

7

2
.

The last equality holds since δ̂(Ci, eCi
) = 1

2
for each i ∈ [3], completing the proof of (i).

We now prove (ii) and (iii). Let us assume without loss of generality that v ∈ V (C1),

and write C1 = xe0B1e1B2 . . . Bkeky with chain-blocks (Bi, ei). Let ℓ ∈ [k] denote the

unique index such that v ∈ V (Bℓ). By symmetry, we may assume that
∑ℓ−1

i=1 δ(Bi, ei) ≤∑k
j=ℓ+1 δ(Bj, ej). Then, by the assumption that Theorem 3.1.4 holds for each (Bj, ej), we

have
k∑

j=ℓ+1

δ̂(Bj, ej) ≤
k∑

j=ℓ+1

(−δ(Bj, ej)) ≤ −

(
ℓ−1∑
i=1

δ(Bi, ei)

)
. (3.5)

Consider the tuple of even covers (F1, . . . , Fk, F
2), where Fi ∈ E(Bi, ei) for i ∈ [ℓ−1],

Fℓ ∈ E(Bℓ + x′v, x′v) where x′ is the endpoint of eℓ−1 in Bℓ, Fj ∈ Ê(Bj, eBj
) for j =
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ℓ + 1, . . . , k, and F 2 ∈ E(C2, eC2). This corresponds to an even cover F ∈ E(G, e)

containing a cycle through all of xe0B1 . . . Bℓ−1eℓ−1, e, uy, and C2, such that

exc(F )− 2 =
ℓ−1∑
i=1

(exc(Fi)− 2) + (exc(Fℓ)− 2) +
k∑

j=ℓ+1

exc(Fj) + (exc(F 2)− 2).

Since

n(G) =
ℓ−1∑
i=1

n(Bi) + n(Bℓ + x′v) +
k∑

j=ℓ+1

n(Bj) + n(C2) + 3, and

n2(G) =
ℓ−1∑
i=1

n2(Bi) + n2(Bℓ + x′v) +
k∑

j=ℓ+1

n2(Bj) + n2(C2)− 1,

we have

exc(G, e) ≤
ℓ−1∑
i=1

exc(Bi, ei) + exc(Bℓ + x′v, x′v) +
k∑

j=ℓ+1

êxc(Bj, ej) + exc(C2, eC2)

=
n(G) + n2(G)

4
− 1

2
+

(
ℓ−1∑
i=1

δ(Bi, ei)

)
+ δ(Bℓ + x′v, x′v)

+

(
k∑

j=ℓ+1

δ̂(Bj, ej)

)
+ δ(C2, eC2)

≤ n(G) + n2(G)

4
− 1

2
+ δ(Bℓ + x′v, x′v) + δ(C2, eC2) (by (3.5))

≤ n(G) + n2(G)

4
− 3

2
,

where the last inequality follows as by our assumption Theorem 3.1.4 holds for (Bℓ +

x′v, x′v) and (C2, eC2). Hence δ(G, e) ≤ −3
2

and (ii) holds.

To prove (iii), suppose (δ(G, e), δ̂(G, e)) = (−3
2
, 3
2
). Then equality holds above, so we

have δ(Bℓ + x′v, x′v) = δ(C2, eC2) = −1
2
. Moreover, C1 and C2 are minimal chains (by

(i)), which implies k = ℓ = 1 and δ(Bℓ, eℓ) = δ(C1, eC1) = −1
2

(by Proposition 3.1.1).

So δ(Bℓ, eℓ) + δ(Bℓ + x′v, x′v) = −1. Now Bℓ is a single vertex; otherwise, by applying

Lemma 3.2.2 to Bℓ, x′, the other endpoint y′ of eℓ, and v, we obtain δ(Bℓ, eℓ) + δ(Bℓ +
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x′v, x′v) = δ(Bℓ+x′y′, x′y′)+δ(Bℓ+x′v, x′v) ≤ −2, a contradiction. Therefore, we have

Bℓ = {x′} = {v}, and e joins two nonadjacent vertices of the 4-cycle xvyux.

We conclude this section with a lemma bounding δ̂(G, e), which proves statement (T2)

of Theorem 3.1.4, assuming Theorem 3.1.4 for smaller graphs.

Lemma 3.2.4. Let G be a 2-connected subcubic graph with e = uv ∈ E(G) such that

G − e is simple and 2-connected. Assume that Theorem 3.1.4 holds for graphs with fewer

than n(G) vertices. Then δ̂(G, e) ≤ 3
2
, with equality if and only if (Gu, fu) is a minimal

rooted θ-chain, where Gu is the graph obtained from G− e by suppressing u into an edge

fu.

Proof. Since G− e is 2-connected, both u and v have degrees 3. Define Gu, fu as stated in

the lemma. We claim that

δ̂(G, e) = min{δ(Gu, fu) + 2, δ̂(Gu, fu) + 1}. (3.6)

Indeed, there is a bijective correspondence between Ê(G, e) and E(Gu) obtained as follows.

If F ∈ Ê(G, e) contains a cycle through u, then we obtain Fu ∈ E(Gu, fu) by suppressing

u in F , and we have exc(F ) = exc(Fu). Otherwise, if u is an isolated vertex in F , then we

obtain Fu ∈ Ê(Gu, fu) by removing u from F , and we have exc(F ) = exc(Fu) + 1. Since

n(G) + n2(G) = n(Gu) + n2(Gu), (3.6) follows from the definitions of δ, δ̂.

It follows from (3.6) that δ̂(G, e) ≤ δ(Gu, fu) + 2 ≤ 3
2

by the assumption that The-

orem 3.1.4 holds for (Gu, fu). Moreover, δ̂(G, e) = 3
2

if and only if δ(Gu, fu) = −1
2

and δ̂(Gu, fu) = 1
2
, which is equivalent to (Gu, fu) being a minimal rooted θ-chain by

Lemma 3.2.1.

3.3 Proof of Theorem 3.1.4

We proceed by induction on n(G). Note that (T4) is implied by (T1) and (T2): If δ(G, e) ≤

−1 and δ̂(G, e) ≤ 1, then (T4) holds. Otherwise, we have δ(G, e) = −1
2

or δ̂(G, e) = 3
2
. In
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the former case, (T4) follows from (T1) and Lemma 3.2.1; in the latter case, (T4) follows

from (T2) and Lemma 3.2.3. Also note that Lemmas 3.2.3 and 3.2.4 imply (T2). Therefore,

it suffices to prove (T1) and (T3).

If G − {u, v} is disconnected, then (T1) and (T3) both hold by Lemma 3.2.1. So we

may assume that G − {u, v} is connected. It now suffices to show that δ(G, e) ≤ −1 and

that if equality holds, then one of the outcomes of (T3) holds.

Claim 3.3.1. We may assume that G is simple.

Proof. Since G− e is simple, if G is not simple, then there is exactly one edge e∗ parallel

with e. Let G′ be the graph obtained from G by suppressing {u, v} to an edge e′.

Then n(G) = n(G′) + 2 and n2(G) = n2(G
′). By the inductive hypothesis, we have

δ(G′, e′) ≤ −1
2
. But every even cover F ′ ∈ E(G′, e′) gives an even cover F ∈ E(G, e) with

the same excess, so

δ(G, e) = min
F∈E(G,e)

exc(F )− 2− n(G) + n2(G)

4

≤ min
F ′∈E(G′,e′)

exc(F ′)− 2− n(G′) + n2(G
′) + 2

4

= δ(G′, e′)− 1

2

≤ −1.

Now suppose δ(G, e) = −1. Then both inequalities above are tight; in particular, we

have δ(G′, e′) = −1
2
, and by the inductive hypothesis, G′ is a loop or (G′, e′) is a balanced

tight rooted θ-chain. If G′ is a loop then (G, e) satisfies (b) of (T3). So assume that (G′, e′)

is a balanced tight rooted θ-chain, and let C1, C2 denote the two chains of (G′, e′).

Then a pair of even covers F1, F2 where Fi ∈ E(Ci, eCi
) for each i ∈ [2] gives an even

cover F ∈ E(G, e) by combining the two cycles of Fi through eCi
and adding the cycle
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with edge set {e, e∗}, with

exc(F )− 2 = (exc(F1)− 2) + (exc(F2)− 2) + 2.

Since n(G) = n(C1) + n(C2) + 4 and n2(G) = n2(C1) + n2(C2), we have

exc(G, e) ≤ exc(C1, eC1) + exc(C2, eC2) + 2

=
n(G) + n2(G)

4
+ 1 + δ(C1, eC1) + δ(C1, eC1),

so δ(G, e) ≤ 1 + δ(C1, eC1) + δ(C2, eC2). Thus, we have δ(Ci, eCi
) ∈ {−1

2
,−1} for each

i ∈ [2]; in other words, (G′, e′) is a near-minimal rooted θ-chain. So (G, e) satisfies (b) of

(T3).

Claim 3.3.2. We may assume that e is not in any 2-edge-cut of G.

Proof. Suppose there is an edge e′ such that {e, e′} is a 2-edge-cut of G. Let C be a subcu-

bic chain of G with end edges e, e′. By Proposition 3.1.2 and by the inductive hypothesis

applied to (G/C, eG/C) and (C, eC), we have

δ(G, e) = δ(G/C, eG/C) + δ(C, eC) ≤ −1.

Moreover, if δ(G, e) = −1, then δ(G/C, eG/C) = δ(C, eC) = −1
2
, so (G/C, eG/C) and

(C, eC) are loops or balanced tight rooted θ-chains and (c) of (T3) holds for (G, e).

By Claim 3.3.2, let u1, u2 denote the two neighbors of u distinct from v, and let v1, v2

denote the two neighbors of v distinct from u. Moreover, there exist two disjoint paths

P1, P2 from {u1, u2} to {v1, v2} in G− {u, v}. We may assume without loss of generality

that the set of endpoints of Pi is {ui, vi}, i ∈ [2].

Let S denote the set of all cut edges in G − {u, v}. Then each component of G −

{u, v} − S is either an isolated vertex or 2-connected.
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Claim 3.3.3. For each i ∈ [2], there is a unique component Zi of G−{u, v}−S, such that

there are three paths in G−{u, v} from Zi to {ui, vi, u3−i}, pairwise disjoint except possibly

at their endpoints in Zi, and there are three paths in G − {u, v} from Zi to {ui, vi, v3−i},

pairwise disjoint except possibly at their endpoints in Zi. See Figures 3.4 and 3.5.

Proof. By symmetry, it suffices to prove the claim for i = 1. First, we show that there is

an unique component Z1 of G − {u, v} − S such that there are three paths in G − {u, v}

from Z1 to {u1, v1, u2}, pairwise disjoint except possibly at their endpoints in Z1. Indeed,

if there were two distinct such components Z,Z ′, they are by definition separated by a cut-

edge s ∈ S of G−{u, v}. But G−{u, v}− s has exactly two connected components, one

of which contains at least two of {u1, v1, u2}, so one of Z,Z ′ is separated from two vertices

of {u1, v1, u2} by a cut-edge, contradicting the assumptions on Z,Z ′.

Similarly, there is a unique connected component Z ′
1 of G− {u, v} − S such that there

are three paths in G − {u, v} from Z ′
1 to {u1, v1, v2}, pairwise disjoint except possibly at

their endpoints in Z ′
1. We now show that Z1 = Z ′

1. Otherwise, there is a cut edge s of

G−{u, v} separating Z1 from Z ′
1. Then the two connected components of G−{u, v}− s

each contain exactly one of {u1, v1} and exactly one of {u2, v2}. But this implies that {e, s}

is a 2-edge-cut in G, contradicting Claim 3.3.2.

There are two cases to consider: either Z1 ̸= Z2 or Z1 = Z2. For i ∈ [2], let u′
i

(respectively, v′i) denote the vertex of Zi that is the endpoint of a (possibly trivial) path

in G − {u, v} from ui (respectively, vi) to Zi that is internally disjoint from Z1 ∪ Z2.

Note that u′
i and v′i are uniquely determined. For i ∈ [2], let Ui denote the unique (possibly

trivial) subcubic chain of G−{v, u3−i} with endpoints {u, u′
i}, and let Vi denote the unique

subcubic chain of G− {u, v3−i} with endpoints {v, v′i}.
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Figure 3.4: Z1 ̸= Z2

Case 1: Z1 ̸= Z2.

There is a cut-edge separating Z1 and Z2 in G− {u, v} and there is a unique subcubic

chain Y of G − {u, v} with an endpoint zi ∈ Zi for each i ∈ [2], internally disjoint from

Z1 ∪ Z2. Then G is the union of U1, U2, V1, V2, Z1, Z2, Y, and the edge e = uv. We have,

for i, j ∈ [2],

n(G) = n(U1) + n(U2) + n(V1) + n(V2) + n(Z1 + u′
iz1) + n(Z2 + v′jz2) + n(Y ) + 2,

n2(G) = n2(U1) + n2(U2) + n2(V1) + n2(V2) + n2(Z1 + u′
iz1) + n2(Z2 + v′jz2) + n2(Y )− 2.

Suppose F ∈ E(G, e) goes through U1, Y , and V2. Then there is a correspondence

between F and the tuple (FU1 , FZ1 , FY , FZ2 , FV2 , FU2 , FV1), where

• FU1 ∈ E(U1, eU1), FZ1 ∈ E(Z1 + u′
1z1, u

′
1z1), FY ∈ E(Y , eY ), FZ2 ∈ E(Z2 +

v′2z2, v
′
2z2), FV2 ∈ E(V2, eV2), and

• FU2 ∈ Ê(U2, eU2), FV1 ∈ Ê(V1, eV1).
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This gives

exc(G, e) ≤ exc(U1, eU1) + exc(Z1 + u′
1z1, u

′
1z1) + exc(Y , eY ) + exc(Z2 + v′2z2, v

′
2z2)

+ exc(V2, eV2) + êxc(U2, eU2) + êxc(V1, eV1)

=
n(G) + n2(G)

4
+ δ(U1, eU1) + δ(Z1 + u′

1z1, u
′
1z1) + δ(Y , eY )

+ δ(Z2 + v′2z2, v
′
2z2) + δ(V2, eV2) + δ̂(U2, eU2) + δ̂(V1, eV1),

hence

δ(G, e) ≤ δ(U1, eU1) + δ(Z1 + u′
1z1, u

′
1z1) + δ(Y , eY ) + δ(Z2 + v′2z2, v

′
2z2) + δ(V2, eV2)

+ δ̂(U2, eU2) + δ̂(V1, eV1).

(3.7)

Similarly, by considering an even cover in E(G, e) through U2, Y , and V1, we obtain

δ(G, e) ≤ δ(U2, eU2) + δ(Z2 + u′
2z2, u

′
2z2) + δ(Y , eY ) + δ(Z1 + v′1z1, v

′
1z1) + δ(V1, eV1)

+ δ̂(U1, eU1) + δ̂(V2, eV2).

(3.8)

50



Now suppose δ(G, e) ≥ −1. Then

−1 ≤ δ(U1, eU1) + δ(Z1 + u′
1z1, u

′
1z1) + δ(Y , eY ) + δ(Z2 + v′2z2, v

′
2z2) + δ(V2, eV2)

+ δ̂(U2, eU2) + δ̂(V1, eV1)

(by (3.7))

≤ −
(
δ̂(U1, eU1) + δ̂(V2, eV2) + δ(U2, eU2) + δ(V1, eV1)

)
(by inductive hypothesis)

+ δ(Z1 + u′
1z1, u

′
1z1) + δ(Y , eY ) + δ(Z2 + v′2z2, v

′
2z2)

= −
(
δ̂(U1, eU1) + δ̂(V2, eV2) + δ(U2, eU2) + δ(V1, eV1)

)
−
(
δ(Z2 + u′

2z2, u
′
2z2) + δ(Y , eY ) + δ(Z1 + v′1z1, v

′
1z1)

)
+
(
δ(Z2 + u′

2z2, u
′
2z2) + δ(Y , eY ) + δ(Z1 + v′1z1, v

′
1z1)

)
+ δ(Z1 + u′

1z1, u
′
1z1) + δ(Y , eY ) + δ(Z2 + v′2z2, v

′
2z2)

≤ 1 + δ(Z1 + u′
1z1, u

′
1z1) + δ(Y , eY ) + δ(Z2 + v′2z2, v

′
2z2) (by (3.8))

+ δ(Z2 + u′
2z2, u

′
2z2) + δ(Y , eY ) + δ(Z1 + v′1z1, v

′
1z1).

This gives

−2 ≤ δ(Z1 + u′
1z1, u

′
1z1) + δ(Z2 + v′2z2, v

′
2z2) + δ(Z2 + u′

2z2, u
′
2z2)

+ δ(Z1 + v′1z1, v
′
1z1) + 2δ(Y , eY ) ≤ −2,

since by the inductive hypothesis, the all terms are each at most −1
2

except δ(Y , eY ) = 0

when Y is a trivial chain. Hence, δ(G, e) = −1,

δ(Z1 + u′
1z1, u

′
1z1) = δ(Z2 + v′2z2, v

′
2z2) = δ(Z1 + u′

2z2, u
′
2z2) = δ(Z1 + v′1z1, v

′
1z1) = −1

2
,

and δ(Y , eY ) = 0 (i.e., Y is a trivial chain). By Lemma 3.2.2, Z1 and Z2 are single vertices.

So for i, j ∈ [2], δ(Zi+u′
jzi, u

′
jzi) = δ(Zi+v′jzi, v

′
jzi) = −1

2
. Hence, from (3.7) and (3.8),
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and by the inductive hypothesis, we have

δ(Ui, eUi
) = δ(Vj, eVj

) = 0

for each i, j ∈ [2], so Ui, Vj are all trivial chains as well. This proves that G ∼= K4,

satisfying (a) of (T3).

Figure 3.5: Z1 = Z2

Case 2: Z1 = Z2.

Let Z := Z1 = Z2. Then u′
1, u

′
2, v

′
1, v

′
2 are distinct vertices (since G is subcubic and Z

is 2-connected), and G is the union of U1, U2, V1, V2, Z, and the edge e. Note that

n(G) = n(U1) + n(U2) + n(V1) + n(V2) + n(Z + u′
iv

′
j) + 2

n2(G) = n2(U1) + n2(U2) + n2(V1) + n2(V2) + n2(Z + u′
iv

′
j)− 2.

For i, j ∈ [2], let F ∈ E(G, e) be an even cover through Ui and Vj . This corresponds to

a tuple (FU1 , FU2 , FV1 , FV2 , FZ) where

• FUi
∈ E(Ui, eUi

), FVj
∈ E(Vj, eVj

), FZ ∈ E(Z + u′
iv

′
j, u

′
iv

′
j), and

• FU3−i
∈ Ê(U3−i, eU3−i

), FV3−j
∈ Ê(V3−j, eV3−j

),
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which gives

exc(G, e) ≤ exc(Ui, eUi
) + exc(Vj, eVj

) + exc(Z + u′
iv

′
j, u

′
iv

′
j)

+ êxc(U3−i, eU3−i
) + êxc(V3−j, eV3−j

)

=
n(G) + n2(G)

4
+ δ(Ui, eUi

) + δ(Vj, eVj
) + δ(Z + u′

iv
′
j, u

′
iv

′
j)

+ δ̂(U3−i, eU3−i
) + δ̂(V3−j, eV3−j

).

Hence, for all i, j ∈ [2],

δ(G, e) ≤ δ(Ui, eUi
) + δ(Vj, eVj

) + δ(Z + u′
iv

′
j, u

′
iv

′
j) + δ̂(U3−i, eU3−i

) + δ̂(V3−j, eV3−j
)

(3.9)

We now show that δ(G, e) ≤ −3
2
, which completes the proof of Theorem 3.1.4. Sup-

pose to the contrary that δ(G, e) ≥ −1. Then by (3.9) and the inductive hypothesis,

−1 ≤ δ(Ui, eUi
) + δ(Vj, eVj

) + δ̂(U3−i, eU3−i
) + δ̂(V3−j, eV3−j

) + δ(Z + u′
iv

′
j, u

′
iv

′
j)

(by (3.9))

≤ −
(
δ̂(Ui, eUi

) + δ̂(Vj, eVj
) + δ(U3−i, eU3−i

) + δ(V3−j, eV3−j
)
)

(by (T4))

+ δ(Z + u′
iv

′
j, u

′
iv

′
j)

= −
(
δ̂(Ui, eUi

) + δ̂(Vj, eVj
) + δ(Z + u′

3−iv
′
3−j, u

′
3−iv

′
3−j) + δ(U3−i, eU3−i

)

+ δ(V3−j, eV3−j
)
)
+ δ(Z + u′

iv
′
j, u

′
iv

′
j) + δ(Z + u′

3−iv
′
3−j, u

′
3−iv

′
3−j)

≤ 1 + δ(Z + u′
iv

′
j, u

′
iv

′
j) + δ(Z + u′

3−iv
′
3−j, u

′
3−iv

′
3−j). (by (3.9))

Hence for i, j ∈ [2],

−2 ≤ δ(Z + u′
iv

′
j, u

′
iv

′
j) + δ(Z + u′

3−iv
′
3−i, u

′
3−jv

′
3−j) (3.10)
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On the other hand, applying Lemma 3.2.2 to u′
i, v

′
1, v

′
2 and v′j, u

′
1, u

′
2, we have for all i, j ∈

[2]

δ(Z + u′
iv

′
1, u

′
iv

′
1) + δ(Z + u′

iv
′
2, u

′
iv

′
2) ≤ −2 and

δ(Z + u′
1v

′
j, u

′
1v

′
j) + δ(Z + u′

2v
′
j, u

′
2v

′
j) ≤ −2.

(3.11)

Now, setting i = j = 1 and setting i = 1 and j = 2 in (3.10), we have

−4 ≤ δ(Z + u′
1v

′
1, u

′
1v

′
1) + δ(Z + u′

2v
′
2, u

′
2v

′
2) + δ(Z + u′

1v
′
2, u

′
1v

′
2) + δ(Z + u′

2v
′
1, u

′
2v

′
1).

On the other hand, setting i = 1 and i = 2 in the first inequality of (3.11), we have

δ(Z + u′
1v

′
1, u

′
1v

′
1) + δ(Z + u′

1v
′
2, u

′
1v

′
2) + δ(Z + u′

2v
′
1, u

′
2v

′
1) + δ(Z + u′

2v
′
2, u

′
2v

′
2) ≤ −4.

We thus have equality everywhere. In particular, δ(G, e) = −1 and we have equality in

(3.10) and (3.11), which implies that for all i, j ∈ [2],

δ(Z + u′
iv

′
j, u

′
iv

′
j) = −1. (3.12)

Since Z + u′
iv

′
j has at least two vertices of degree 2 (namely u′

3−i and v′3−j), it is not

isomorphic to K4. Moreover, since Z is 2-connected, u′
iv

′
j is not contained in any 2-edge-

cut in Z + u′
iv

′
j . So each (Z + u′

iv
′
j, u

′
iv

′
j) satisfies (b) or (d) of (T3).

We claim that u′
iv

′
j /∈ E(Z) for all i, j ∈ [2] (hence (Z + u′

iv
′
j, u

′
iv

′
j) satisfies (d) of

(T3)). For, suppose without loss of generality that u′
1v

′
1 ∈ E(Z).

By the inductive hypothesis, (b) of (T3) holds for (Z + u′
1v

′
1, u

′
1v

′
1), so suppressing

{u′
1, v

′
1} in Z to an edge e′ results in a graph Z ′ such that (Z ′, e′) is a near-minimal rooted

θ-chain. Let C1, C2 denote the two chains of (Z ′, e′). Assume without loss of generality

that v′2 ∈ V (C1). Since v′2 has degree 2 in Z, it is in the interior of C1, and this implies that

Z − {u′
1, v

′
2} is connected and v′2u

′
1 /∈ E(Z). Then (Z + u′

1v
′
2, u

′
1v

′
2) satisfies (d) of (T3),
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which implies that Z − {u′
1, v

′
2} is disconnected, a contradiction.

It follows that (Z + u′
iv

′
j, u

′
iv

′
j) satisfy (d) of (T3) for all i, j ∈ [2], so (Z + u′

iv
′
j, u

′
iv

′
j)

is a rooted θ-chain for all i, j ∈ [2]. Consider the rooted θ-chain (Z + u′
1v

′
1, u

′
1v

′
1). Since

(Z + u′
1v

′
2, u

′
1v

′
2) (respectively, (Z + u′

2v
′
1, u

′
2v

′
1)) is a rooted θ-chain, {v′2} (respectively,

{u′
2}) is a block in one of the chains of (Z + u′

1v
′
1, u

′
1v

′
1). Let C1 denote the subcubic chain

of Z with end points {u′
1, v

′
1} not containing v′2, and let C2 denote the subcubic chain of Z

with end points {u′
1, v

′
2} not containing v′1. Let D denote the subcubic chain of Z with end

points {v′1, v′2} not containing u′
1.

Then for j ∈ [2], n(Z + u′
1v

′
j) = n(C1) + n(C2) + n(D) + 3 and n2(Z + u′

1v
′
j) =

n2(C1) + n2(C2) + n2(D) + 1. Thus for each j ∈ [2], by forming an even cover in

E(Z + u′
1v

′
j, u

′
1v

′
j) using even covers from Ê(Cj, eCj

), E(D, eD), and E(C3−j, eC3−j
), we

obtain

δ(Z + u′
1v

′
j, u

′
1v

′
j) ≤ −1 + δ̂(Cj, eCj

) + δ(D, eD) + δ(C3−j, eC3−j
).

Adding these two inequalities and using (3.12), we have

0 ≤ δ(C1, eC1) + δ̂(C1, eC1) + 2δ(D, eD) + δ(C2, eC2) + δ̂(C2, eC2)

≤ 2δ(D, eD)

by (T4) applied to (Ci, eCi
). It follows that D is a trivial chain, and v′1v

′
2 ∈ E(Z).

By symmetry, u′
1u

′
2 ∈ E(Z). Thus, {u′

1u
′
2, v1v

′
2} is a 2-edge-cut in Z. Let D1, D2 de-

note the connected components of Z −{u′
1u

′
2, v

′
1v

′
2} and (by relabeling u′

1, u
′
2 if necessary)

assume u′
i, v

′
i ∈ V (Di) for i ∈ [2].

Then for i, j ∈ [2], n(Z + u′
iv

′
j, u

′
iv

′
j) = n(D1, eD1) + n(D2, eD2) + 4 and n2(Z +

u′
iv

′
j, u

′
iv

′
j) = n2(D1, eD1) + n2(D2, eD2) + 2. Thus, by forming an even cover in E(Z +
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u′
iv

′
j, u

′
iv

′
j) using even covers from E(Dk, eDk

) and Ê(D3−k, eD3−k
) for k ∈ [2], we get

δ(Z + u′
iv

′
j, u

′
iv

′
j) ≤ −3

2
+ δ(Dk, eDk

) + δ̂(D3−k, eD3−k
)

Adding these two inequalities and using (3.12) and (T4), we have

1 ≤ δ(D1, eD1) + δ̂(D1, eD1) + δ(D2, eD2) + δ̂(D2, eD2) ≤ 0,

a contradiction. This completes the proof of Theorem 3.1.4.

3.4 Extremal Examples

In this section, we give a structural characterization of the extremal examples of Theo-

rem 1.1.2. Recall that for a subcubic graph G and any edge e ∈ E(G), we have

exc(G) = min{exc(G, e) + 2, êxc(G, e)}

=
n(G) + n2(G)

4
+ min{δ(G, e) + 2, δ̂(G, e)}.

So if either δ(G, e) ≤ −3
2

or δ̂(G, e) ≤ 1
2

for any edge e ∈ E(G), then exc(G) ≤
n(G)+n2(G)

4
+1

2
. It follows that exc(G) = n(G)+n2(G)

4
+1 (equivalently, tsp(G) = 5n(G)+n2(G)

4
−

1) if and only if (δ(G, e), δ̂(G, e)) = (−1, 1) for all e ∈ E(G).

Proposition 3.4.1. Let G be a simple 2-connected subcubic graph and let e be an edge

of G. Then (δ(G, e), δ̂(G, e)) = (−1, 1) if and only if either G ∼= K4 or G is a minimal

θ-chain.

Proof. Suppose (δ(G, e), δ̂(G, e)) = (−1, 1). Since δ(G, e) = −1, one of the four out-

comes of (T3) holds. If G ∼= K4 then we are done. Since G is simple, (b) of (T3) cannot

occur. Moreover, (d) of (T3) does not hold; otherwise, (G, e) is a simple rooted θ-chain

and, by Lemma 3.2.1 (ii), δ̂(G, e) ≤ 3
2
+ δ(C1, eC1) + δ(C2, eC2) ≤ 1/2, a contradiction.
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Thus (c) of (T3) holds: there exists e′ ∈ E(G) such that {e, e′} is a 2-edge-cut in G and

suppressing either subcubic chain C of G with end edges e, e′ yields a loop or a balanced

tight rooted θ-chain (G/C, eG/C). Let C be a subcubic chain of G with end edges e, e′.

Then by Proposition 3.1.2 and (T4),

−1 = δ(G, e) = δ(G/C, eG/C) + δ(C, eC)

≤ −
(
δ̂(G/C, eG/C) + δ̂(C, eC)

)
= −δ̂(G, e) = −1.

This implies that (δ(G/C, eG/C), δ̂(G/C, eG/C)) = (δ(C, eC), δ̂(C, eC)) = (−1
2
, 1
2
), and

thus (C, eC) and (G/C, eG/C) are minimal rooted θ-chains (by Lemma 3.2.1 (iii)). There-

fore, by definition, G is a minimal θ-chain (since it is the internally disjoint union of C and

the two chains of (G/C, eG/C), all of which are minimal).

To give an alternate structural characterization of minimal (rooted) θ-chains, we now

describe an operation introduced in [19]. Let H be a graph and v ∈ V (H) be a vertex of

degree 2. A ⋄-operation on H at v deletes v from H , adds a 4-cycle D disjoint from H−v,

and adds a matching between the neighbors of v and two nonadjacent vertices in D. See

Figure 3.6. We say that a graph is H-constructible if it can be obtained from H by repeated

⋄-operations.

v −→ D

Figure 3.6: The ⋄-operation

It is observed in [19] that after each ⋄-operation, the excess of the new graph in-

creases by 1 and the new quantity n(G)+n2(G)
4

also increases by 1. We will consider K2,3-

constructible graphs and K−
4 -constructible graphs, where K−

4 is the graph obtained from
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the complete graph K4 by removing an edge. Note that exc(K2,3) =
n(K2,3)+n2(K2,3)

4
+ 1;

thus, if G is K2,3-constructible then exc(G) = n(G)+n2(G)
4

+ 1.

Proposition 3.4.2 (Dvořák et al. [19]). Let G be a simple 2-connected subcubic graph. If

G ∼= K4 or G is K2,3-constructible, then (δ(G, e), δ̂(G, e)) = (−1, 1).

We show that the converse of Proposition 3.4.2 is also true, thereby giving a structural

characterization of the extremal graphs for Theorem 1.1.2. First, we have an observation

similar to Proposition 3.4.2. The center of K−
4 is the edge whose endpoints both have

degree 3.

Proposition 3.4.3. Let (G, e) be a simple minimal rooted θ-chain. Then G is K−
4 -constructible,

with the edge e corresponding to the center of K−
4 .

Proof. By (T1) and Lemma 3.2.1 (iii), (δ(G, e), δ̂(G, e)) = (−1
2
, 1
2
). Let C1 and C2 be

the chains of (G, e). By the definition of a minimal rooted θ-chain, for each i ∈ [2], we

have (δ(Ci, eCi
), δ̂(Ci, eCi

)) = (−1
2
, 1
2
), so (Ci, eCi

) is either a loop or a minimal rooted

θ-chain by ((T1)) and Lemma 3.2.1. If (Ci, eCi
) is not a loop, then by induction, it is

K−
4 -constructible with eCi

corresponding to the center of K−
4 . It follows that (G, e) is

K−
4 -constructible with e corresponding to the center of K−

4 .

Proposition 3.4.4. Let G be a simple minimal θ-chain. Then G is K2,3-constructible.

Proof. By definition, there exists a choice of three chains C1, C2, C3 of G with com-

mon endpoints such that G is the internally disjoint union C1 ∪ C2 ∪ C3, and we have

(δ(Ci, eCi
), δ̂(Ci, eCi

)) = (−1
2
, 1
2
) for each i ∈ [3]. If G ∼= K2,3, then we are done. So we

may assume without loss of generality that (C1, eC1) is not a loop. Then it is a minimal

rooted θ-chain by Lemma 3.2.1, and by Proposition 3.4.3, it is K−
4 -constructible with the

edge eC1 corresponding to the center of K−
4 . On the other hand, (G/C1, eG/C1) is by def-

inition a minimal rooted θ-chain, so it is also K−
4 -constructible by Proposition 3.4.3, with

eG/C corresponding to the center of K−
4 . It follows that G is K2,3-constructible.
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We thus have the following characterization of the extremal examples of Theorem 1.1.2.

Theorem 3.4.5. Let G be a simple 2-connected subcubic graph. Then exc(G) ≤ n(G)+n2(G)
4

+

1, with equality if and only if either G ∼= K4 or G is K2,3-constructible.

Proof. Let e ∈ E(G). If δ(G, e) ≤ −3
2

or δ̂(G, e) ≤ 1
2
, then exc(G) ≤ n(G)+n2(G)

4
+ 1

2
.

Otherwise, we have (δ(G, e), δ̂(G, e)) = (−1, 1), or equivalently, exc(G) = n(G)+n2(G)
4

+1.

Now if G ∼= K4 or G is K2,3-constructible, then (δ(G, e), δ̂(G, e)) = (−1, 1) by Propo-

sition 3.4.2. Conversely, if (δ(G, e), δ̂(G, e)) = (−1, 1), then by Propositions 3.4.1 and

3.4.4, either G ∼= K4 or G is K2,3-constructible.

3.5 The Algorithm

We now provide an algorithm for finding a TSP walk of length at most 5n(G)+n2(G)
4

− 1

in any simple 2-connected subcubic graph G. This is achieved by following the proof of

Theorem 3.1.4 to construct an even cover F of G with exc(F ) ≤ n(G)+n2(G)
4

+ 1. As noted

by Dvořák et al. [19], modifying this even cover to our desired TSP walk takes linear time.

In the proof of Theorem 3.1.4, we often have a choice of routing a cycle through certain

subcubic chains and not through others. For each such chain C, we “save” δ(C, eC) by

going through C and incur a “cost” δ̂(C, eC) by not going through C. The key idea of

Theorem 3.1.4 is that these costs and savings are (at worst) balanced, i.e. δ(C, eC) +

δ̂(C, eC) ≤ 0. Of course, for a given subcubic graph G and an edge e, we cannot efficiently

compute δ(G, e) and δ̂(G, e) exactly (unless P=NP). Instead, we compute “worst-case”

estimates

(∆(G, e), ∆̂(G, e)) ∈
{
(−1

2
, 1
2
), (−1, 1), (−3

2
, 3
2
)
}

such that (δ(G, e), δ̂(G, e)) ≤ (∆(G, e), ∆̂(G, e)) (coordinate-wise).

The natural approach would be to determine exactly when δ(G, e) = −1
2

or δ̂(G, e) = 3
2

using our characterization of the extremal examples in Theorem 3.1.4, and then assigning

(∆(G, e), ∆̂(G, e)) to be (−1
2
, 1
2
) or (−3

2
, 3
2
) respectively (and assign (−1, 1) in all other
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cases). To check whether (G, e) is a minimal rooted θ-chain (for example), we would need

to first check that it is a rooted θ-chain (which takes linear time) and then recursively check

that each of its two chains are also minimal, taking quadratic time overall. This approach

would result in a cubic algorithm to produce the desired even covers.

It turns out that a much simpler linear-time estimate is sufficient, and yields a quadratic-

time algorithm to find the desired even covers. Indeed, by Lemma 3.2.1, if (G, e) is a rooted

θ-chain (regardless of whether it is tight or balanced), then we have (δ(G, e), δ̂(G, e)) ≤

(−1
2
, 1
2
). And by Lemma 3.2.3, if G− e is simple and 2-connected and (Gu, fu) is a rooted

θ-chain (where Gu is obtained from G − e by suppressing an endpoint u to an edge fu),

then we have (δ(G, e), δ̂(G, e)) ≤ (−3
2
, 3
2
).

We thus define an algorithm Scan(G, e) to estimate (δ(G, e), δ̂(G, e)) as follows. If G

is a loop or G− e is 2-connected, Scan(G, e) will assign

(∆(G, e), ∆̂(G, e)) =


(−1

2
, 1
2
) if (G, e) is a loop or a rooted θ-chain,

(−3
2
, 3
2
) if (Gu, fu) is a rooted θ-chain,

(−1, 1) otherwise.

If G − e is not 2-connected (and it is not a loop), then (G, e) can be written as the closure

(C, eC) of a subcubic chain C = xe0B1e1 · · · ek−1Bkeky such that k ≥ 2 (if k = 1, then

G− e = C − eC is 2-connected or an isolated vertex). In this case, our estimate on (G, e)

will be the sum of the estimates of the chain-blocks (Bi, eBi
) of C:

(∆(G, e), ∆̂(G, e)) =
k∑

i=1

(∆(Bi, eBi
), ∆̂(Bi, eBi

)).

For the remainder of this section, given a 2-connected subcubic graph G and an edge

e = uv ∈ E(G) such that G − e is simple and has no cut-vertex, we let u1, u2 denote the

two neighbors of u not equal to v, and denote by Gu the graph obtained by deleting e and

suppressing u to an edge fu = u1u2. Note that computing Gu and fu takes constant time.
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To resolve ambiguities in the choice of the vertex u in the edge e = uv (in the case where

∆̂(G, e) = 3
2
), we fix a linear ordering ≤ of the vertices throughout, and assume that u ≤ v.

Proposition 3.5.1. Let G be a subcubic graph and let e = uv ∈ E(G) such that G − e is

simple. Then δ(G, e) ≤ ∆(G, e) and δ̂(G, e) ≤ ∆̂(G, e).

Proof. First suppose G is a loop or G − e is 2-connected. If (G, e) is a loop or a rooted

θ-chain, then by Lemma 3.2.1, (δ(G, e), δ̂(G, e)) ≤ (−1
2
, 1
2
) = (∆(G, e), ∆̂(G, e)). If

(Gu, fu) is a rooted θ-chain, then by Lemma 3.2.3,

(δ(G, e), δ̂(G, e)) ≤ (−3

2
,
3

2
) = (∆(G, e), ∆̂(G, e)).

Otherwise, by Theorem 3.1.4, we have (δ(G, e), δ̂(G, e)) ≤ (−1, 1) = (∆(G, e), ∆̂(G, e)).

Now suppose G−e is not 2-connected. Then we can write (G, e) as the closure (C, eC)

of a subcubic chain C = xe0B1e1 · · · ek−1Bkeky where k ≥ 2. By Proposition 3.1.1 and

by induction, we have

(δ(C, eC), δ̂(C, eC)) =
k∑

i=1

(δ(Bi, eBi
), δ̂(Bi, eBi

))

≤
k∑

i=1

(∆(Bi, eBi
), ∆̂(Bi, eBi

))

= (∆(G, e), ∆̂(G, e)).

Checking whether (G, e) is a rooted θ-chain is equivalent to checking whether G −

{u, v} is disconnected, which can be done in linear time. More generally, we can determine

the block structure of graphs with a depth first search (DFS) in O(n(G)+|E(G)|) time (e.g.

[cormen2009introduction]), which is O(n(G)) when G is subcubic.
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Algorithm 1: Scan(G, e)

Input : A loop or a 2-connected subcubic graph G and e = uv ∈ E(G) such that G− e

is simple

Output: A half integral vector (∆(G, e), ∆̂(G, e)) ∈ {(−1
2 ,

1
2), (−1, 1), (−3

2 ,
3
2)}.

1 if G− e has a cut-vertex then

2 Write (G, e) as the closure (C, eC) of a subcubic chain C = xe0B1e1 · · · ek−1Bkeky;

3 return
∑k

i=1 Scan(Bi, eBi);

4 if G− {u, v} is disconnected or G is a loop then

5 return (−1
2 ,

1
2);

6 else if Gu − {u1, u2} is disconnected then

7 return (−3
2 ,

3
2);

8 else

9 return (−1, 1);

Proposition 3.5.2. Scan(G, e) can be computed in O(n(G)) time.

Proof. If Scan(G, e) returns on lines 5, 7, or 9, then it performs at most three depth first

searches, thus requiring O(n(G)) time. Now suppose Scan(G, e) returns on line 3; that is,

(G, e) is the closure of a subcubic chain C = xe0B1e1 · · · ek−1Bkeky where k ≥ 2. For all

i ∈ [k], Bi− eBi
is either 2-connected or a single vertex, so Scan(Bi, eBi

) will not execute

line 2. Thus Scan(G, e) requires a depth first search on an input of size n(G) on line 1 and

at most three depth first searches for each Bi, i ∈ [k]. As
∑k

i=1 n(Bi) < n(G), we have

that in all cases, Scan(G, e) requires O(n(G)) time.

We will define two algorithms EC(G, e) and ÊC(G, e) which will return an even cover

F in E(G, e) and Ê(G, e) respectively such that exc(F ) ≤ n(G)+n2(G)
4

+ ∆(G, e) + 2 and

exc(F ) ≤ n(G)+n2(G)
4

+ ∆̂(G, e) respectively. For convenience, we wrap these two algo-

rithms in a main algorithm Algo with preprocessing to handle the base case (where (G, e)

is a loop) and the case where G− e is not 2-connected.
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Algorithm 2: Algo(G, e,flag)
Input : A loop or a 2-connected subcubic graph G and e ∈ E(G) such that G− e is

simple, and a binary input flag

Output: F ∈ E(G, e) such that exc(F ) ≤ n(G)+n2(G)
4 +∆(G, e) + 2 (if flag == true) or

F ∈ Ê(G, e) such that exc(F ) ≤ n(G)+n2(G)
4 + ∆̂(G, e) (if flag == false)

1 if G is a loop then

2 if flag == true then

3 return F = G;

4 else

5 return F = G− e;

6 if G− e is not 2-connected then

7 Write (G, e) as the closure (C, eC) of a subcubic chain

C = xe0B1e1B2 . . . ek−1Bkeky;

8 Let Fi = Algo(Bi, eBi ,flag) for all i ∈ [k];

9 if flag == true then

10 return F =
⋃k

i=1(Fi − eBi) + e+ {ei : i ∈ [k − 1]};

11 else

12 return F =
⋃k

i=1 Fi;

13 Let (∆, ∆̂) = Scan(G, e);

14 if flag == true then

15 return F = EC(G, e,∆);

16 else

17 return F = ÊC(G, e);

For the remainder of the section, we let fAlgo : N → N denote a superadditive function

(i.e. fAlgo(n1)+fAlgo(n2) ≤ fAlgo(n1+n2) for all n1, n2 ∈ N) such that Algo(G, e,flag)

takes at most fAlgo(n) steps on inputs of size at most n. We will show in the end that we

can take fAlgo(n) = O(n2).

We now give the algorithm ÊC(G, e) used in line 17 of Algo(G, e,flag), which pro-

duces an even cover F ∈ Ê(G, e) with exc(F ) ≤ n(G)+n2(G)
4

+∆̂(G, e). Recall that (Gu, fu)
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is obtained from G and e = uv by deleting e and suppressing u to an edge fu = u1u2.

Algorithm 3: ÊC(G, e)

Input : A subcubic graph G and e = uv ∈ E(G) such that G− e is simple and

2-connected

Output: An even cover F ∈ Ê(G, e) with exc(F ) ≤ n(G)+n2(G)
4 + ∆̂(G, e) where

∆̂(G, e) = Scan(G, e)2

1 Let F ′ = Algo(Gu, fu, true);

2 return F = (F ′ − fu) + {u}+ {u1u, uu2};

Proposition 3.5.3. Suppose Algo is correct on inputs of size less than n. Then ÊC is

correct and takes fAlgo(n− 1) +O(1) time for all inputs of size less than or equal to n.

Proof. We clearly have F ∈ Ê(G, e). We claim that ∆(Gu, fu) + 2 ≤ ∆̂(G, e). If

∆̂(G, e) = 3
2
, there is nothing to prove (since ∆ ≤ −1

2
). If ∆̂(G, e) = 1, then (Gu, fu) is

not a rooted θ-chain, so ∆(Gu, fu) ≤ −1. Finally, suppose ∆̂(G, e) = 1
2
. Then (G, e) is

a rooted θ-chain. This implies that (Gu, fu) is the closure (C, eC) of a subcubic chain C

with at least three blocks, so ∆(Gu, fu) = ∆(C, eC) ≤ −3
2
. It follows that

exc(F ) = exc(F ′)

≤ n(G) + n2(G)

4
+ ∆(Gu, fu) + 2

≤ n(G) + n2(G)

4
+ ∆̂(G, e).

For the time complexity, note that Algo is called only once on (Gu, fu), which takes

fAlgo(n(Gu)) = fAlgo(n − 1) time. The remaining lines require constant time, thus ÊC

runs in fAlgo(n− 1) +O(1) time.

We now give the algorithm EC(G, e,∆) in line 15 of Algo, which produces an even

cover F ∈ E(G, e) such that exc(F ) ≤ n(G)+n2(G)
4

+∆(G, e)+2. For clarity of presentation,

we split the algorithm into three cases depending on the value ∆. We first describe the case

∆ = −1
2
.
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Algorithm 4: EC(G, e,−1
2
)

Input : A subcubic graph G and e = uv ∈ E(G) such that G− e is simple and

2-connected, and ∆(G, e) = −1
2 (i.e. (G, e) is a rooted θ-chain)

Output: An even cover F ∈ E(G, e) with exc(F ) ≤ n(G)+n2(G)
4 + 3

2

1 Determine the subcubic chains C1 and C2 of (G, e) with a DFS;

2 Let (∆(C1), ∆̂(C1)) = Scan(C1, eC1) and let (∆(C2), ∆̂(C2)) = Scan(C2, eC2);

3 Relabel if necessary so that ∆(C1) + ∆̂(C2) ≤ 0;

4 Let F1 = Algo(C1, eC1 , true) and F2 = Algo(C2, eC2 , false);

5 Let v′ be the neighbor of v in C1 and let u′ be the neighbor of u in C1;

6 return F = (F1 − eC1) ∪ F2 + {u, v}+ {u′u, uv, vv′};

Proposition 3.5.4. Suppose Algo is correct on inputs of size less than n = n(G). Then

EC(G, e,−1
2
) is correct and takes fAlgo(n−1)+O(n) time for all input graphs of size less

than or equal to n.

Proof. For correctness, first note that the relabeling step on line 3 is always possible as

∆(Ci) = −∆̂(Ci) for i ∈ [2]. Since n(G) = n(C1)+n(C2)+2, n2(G) = n2(C1)+n2(C2),

and exc(F ) = exc(F1) + exc(F2), we have

exc(F ) = exc(F1) + exc(F2)

≤ n(C1) + n2(C1)

4
+ ∆(C1) + 2 +

n(C2) + n2(C2)

4
+ ∆̂(C2)

≤ n(G) + n2(G)

4
+

3

2
.

For the time complexity, line 1 requires O(n) time. By Proposition 3.5.2, line 2 re-

quires O(n(C1)) + O(n(C2)) = O(n) time. By induction, line 4 takes fAlgo(n(C1)) +

fAlgo(n(C2)) ≤ fAlgo(n− 1) time. Thus, in total, EC(G, e,−1
2
) takes fAlgo(n− 1)+O(n)

time of inputs of size n.

Before we handle the analysis of EC(G, e,−1), we first give an important subroutine

which is an algorithmic version of Lemma 3.2.2.
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Algorithm 5: Subroutine(Z, u, v1, v2)
Input : A simple 2-connected subcubic graph Z and distinct vertices u, v1, v2 of degree 2

in Z

Output: F ∈ E(Z + uvi, uvi) for some i ∈ [2] with exc(F ) ≤ n(Z+uvi)+n2(Z+uvi)
4 + 1

1 For each i ∈ [2], let (∆i, ∆̂i) = Scan(Z + uvi, uvi);

2 if ∆i ≤ −1 for some i ∈ [2] then

3 return F = Algo(Z + uvi, uvi, true);

4 Let Ci,1, Ci,2 denote the two subcubic chains of (Z + uvi, uvi), i ∈ [2];

5 Let (∆(Ci,j), ∆̂(Ci,j)) = Scan(Ci,j , eCi,j ) for i, j ∈ [2];

6 Relabel if necessary so that ∆(C1,1) + ∆̂(C1,2) ≤ −1
2 ;

7 Let F1 = Algo(C1,1, eC1,1 , true) and F2 = Algo(C1,2, eC1,2 , false);

8 Let u′ be the neighbor of u in C1,1 and v′ be the neighbor of v1 in C1,1;

9 return F = (F1 − eC1,1) ∪ F2 + {u, v}+ {u′u, uv1, v1v′};

Proposition 3.5.5. Suppose Algo is correct for all inputs of size less than or equal to

n = n(Z). Then Subroutine is correct and takes fAlgo(n) +O(n) time for all inputs of

size less than or equal to n.

Proof. We first analyze correctness. If we return on line 3, by correctness of Algo, we

have exc(F ) ≤ n(Z+uvi)+n2(Z+uvi)
4

+ 1. So assume ∆i = ∆(Z + uvi, uvi) = −1
2

for both

i ∈ [2]. Thus both (Z + uvi, uvi) are rooted θ-chains, which implies that v3−i is a trivial

block in one of the chains Ci,1 and Ci,2. This then implies that ∆(Ci,1) ̸= ∆(Ci,2) for some

i ∈ [2]. Thus the relabeling step on line 6 is always possible.

Now consider the even cover F returned on line 9. As n(Z+uv1) = n(C1,1)+n(C1,2)+
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2, n2(Z + uv1) = n2(C1,1) + n2(C1,2), and ∆(C1,1) + ∆̂(C1,2) ≤ −1
2
, we have

exc(F ) = exc(F1) + exc(F2)

≤ n(C1,1) + n2(C1,1)

4
+ ∆(C1,1) + 2 +

n(C1,2) + n2(C1,2)

4
+ ∆̂(C1,2)

≤ n(Z + uv1) + n2(Z + uv1)

4
+ ∆(C1,1) + ∆̂(C1,2) +

3

2

≤ n(Z + uv1) + n2(Z + uv1)

4
+ 1.

For the time complexity, as n(C1,1) + n(C1,2) < n, lines 3 and 7 both take at most

fAlgo(n) time. Furthermore, by Proposition 3.5.2, the remaining lines require O(n) time.

Since we call exactly one of line 3 or 7, Subroutine(Z, u, v1, v2) takes fAlgo(n)+O(n)

time.

We are now ready to present EC(G, e,−1).
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Algorithm 6: EC(G, e,−1)

Input : A subcubic graph G and e = uv ∈ E(G) such that G− e is simple and

2-connected, and ∆(G, e) = −1.

Output: F ∈ E(G, e) with exc(F ) ≤ n(G)+n2(G)
4 + 1

1 Let Z1 and Z2 be the blocks (or single vertices) of G− {u, v} as defined in Claim 3.3.3;

2 Define vertices ui, u′i, vj , v
′
j and subcubic chains Ui, Vj for i, j ∈ [2], as in the proof of

Theorem 3.1.4;

3 Let (∆(Ui), ∆̂(Ui)) = Scan(Ui, eUi) and (∆(Vj), ∆̂(Vj)) = Scan(Vj , eVj ) for i, j ∈ [2];

4 if Z1 ̸= Z2 then

5 Relabel vertices as necessary so that ∆(U1) + ∆(V2) + ∆̂(U2) + ∆̂(V1) ≤ 0;

6 Let Z = Z1 ∪ Z2 ∪ Y , where Y is the subcubic chain from Z1 to Z2;

7 Let FU1 = Algo(U1, eU1 , true), FV2 = Algo(V2, eV2 , true),

FU2 = Algo(U2, eU2 , false), FV2 = Algo(V1, eV1 , false), and

FZ = Algo(Z + u′1v
′
2, u

′
1v

′
2, true);

8 return

F = (FU1 −eU1)∪ (FV2 −eV2)∪FU2 ∪FV1 ∪ (FZ −u′1v
′
2)+{u, v}+{u1u, uv, vv2};

9 else

10 Relabel vertices as necessary so that ∆(U1) + ∆(Vi) + ∆̂(U2) + ∆̂(V3−i) ≤ 0 for

i ∈ [2];

11 Let FZ = Subroutine(Z1, u
′
1, v

′
1, v

′
2);

12 Relabel so that u′1v
′
2 ∈ FZ ;

13 Let FU1 = Algo(U1, eU1 , true), FV2 = Algo(V2, eV2 , true),

FU2 = Algo(U2, eU2 , false), and FV1 = Algo(V1, eV1 , false);

14 return

F = (FZ −u′1v
′
2)∪ (FU1 −eU1)∪ (FV2 −eV2)∪FU2 ∪FV1 +{u, v}+{u1u, uv, vv2};

Proposition 3.5.6. Suppose Algo is correct on all inputs of size less than n = n(G). Then

ÊC(G, e,−1) is correct and takes fAlgo(n− 1) +O(n) time for all inputs of size less than

or equal to n.
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Proof. The proof of correctness follows the same structure of Section ??. The existence of

Z1 and Z2 follows from Claim 3.3.3, and they can be determined from the block structure

of G − {u, v} in linear time. As ∆(Ui) = −∆̂(Ui) and ∆(Vi) = −∆̂(Vi) for i ∈ [2],

the relabeling on lines 5 and 10 are always possible. Furthermore, regardless of whether

Z1 ̸= Z2 or Z1 = Z2, we have

• exc(F )−2 = (exc(FU1)−2)+(exc(FV2)−2)+exc(FU2)+exc(FV1)+(exc(FZ)−2),

• n(G) = n(U1) + n(V2) + n(U2) + n(V1) + n(Z + u′
1v

′
2)− 2, and

• n2(G) = n2(U1) + n2(V2) + n2(U2) + n2(V1) + n2(Z + u′
1v

′
2) + 2.

By induction, we have exc(FU1)−2 ≤ n(U1)+n2(U1)
4

+∆(U1), exc(FV2)−2 ≤ n(V2)+n2(V2)
4

+

∆(V2), exc(FU2) ≤
n(U2)+n2(U2)

4
+ ∆̂(U2), and exc(FV1) ≤

n(V1)+n2(V1)
4

+ ∆̂(V1). We argue

now that in both cases we have

exc(FZ)− 2 ≤ n(Z + u′
1v

′
2) + n2(Z + u′

1v
′
2)

4
− 1. (3.13)

If Z1 = Z2, this follows from Proposition 3.5.5. If Z1 ̸= Z2, then (Z + u′
1v

′
2, u

′
1v

′
2) is the

closure of a subcubic chain with at least two blocks, namely Z1 and Z2. By induction on

its chain-blocks, we have

exc(FZ)− 2 ≤ n(Z + u′
1v

′
2) + n2(Z + u′

1v
′
2)

4
+ ∆(Z + u′

1v
′
2, u

′
1v

′
2)

≤ n(Z + u′
1v

′
2) + n2(Z + u′

1v
′
2)

4
− 1

and (3.13) holds in both cases. Thus,

exc(F )− 2 = (exc(FU1)− 2) + (exc(FV2)− 2) + exc(FU2) + exc(FV1) + (exc(FZ)− 2)

≤ n(G) + n2(G)

4
+ ∆(U1) + ∆(V2) + ∆̂(U2) + ∆̂(V1) + ∆(Z + u1v

′
2, u

′
1v

′
2)

≤ n(G) + n2(G)

4
− 1.
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For the time complexity, note that we only call Algo and Subroutine on inputs

whose sizes sum to less than n. As the remaining lines require O(n) time by Proposi-

tion 3.5.2, we have that the entire algorithm requires fAlgo(n− 1) +O(n) time.

We now present the final case for EC.

Algorithm 7: EC(G, e,−3
2
)

Input : A subcubic graph G and e = uv ∈ E(G) with G− e is simple and 2-connected,

and ∆(G, e) = −3
2 (i.e. (Gu, fu) is a rooted θ-chain)

Output: F ∈ E(G, e) with exc(F ) ≤ n(G)+n2(G)
4 + 1

2

1 Let C1 and C2 denote the chains of (Gu, fu) with common endpoints fu = {u1, u2} and

v ∈ V (C1);

2 Let xi ∈ V (C2) be the neighbor of ui for i ∈ [2];

3 Write C1 = u1e0B1 . . . ek−1Bkeku2;

4 Let ℓ ∈ [k] be the unique index such that v ∈ V (Bℓ);

5 Let v′ denote the endpoint of eℓ−1 in Bℓ, and let v′′ denote the endpoint of eℓ in Bℓ;

6 Let D1 and D2 denote the chains of C1 with end points {u1, v′} and {v′′, u2} respectively;

7 For i ∈ [2], let (∆(Di), ∆̂(Di)) = Scan(Di, eDi);

8 Relabel if necessary so that ∆(D1) + ∆̂(D2) ≤ 0;

9 Let F2 = Algo(C2, eC2 , true), FD,1 = Algo(D1, eD1 , true),

FD,2 = Algo(D2, eD2 , false), and Fℓ = Algo(Bℓ + v′v, v′v, true);

10 return F = (F2 − eC2) ∪ (FD,1 − eD1) ∪ FD,2 ∪ (Fℓ − v′v) + {u, u1, u2}+

{e0, eℓ−1, u1x1, uv, uu2, u2x2};

Proposition 3.5.7. Suppose Algo is correct for all inputs of size less than n = n(G). Then

EC(G, e,−3
2
) is correct and takes fAlgo(n− 1) +O(n) time for all inputs of size less than

or equal to n.

Proof. We first analyze the correctness of the returned even cover F . By induction, we

have that exc(F2) ≤ n(C2)+n2(C2)
4

+ ∆(C2) + 2, exc(FD,1) ≤ n(D1)+n2(D1)
4

+ ∆(D1) + 2,

exc(FD,2) ≤ n(D2)+n2(D2)
4

+ ∆̂(D2), and exc(Fℓ) ≤ n(Bℓ+v′v)+n2(Bℓ+v′v)
4

+ 3
2
. As exc(F )−

2 = (exc(F2)−2)+(exc(FD,1)−2)+exc(FD,2)+(exc(Fℓ)−2), n(G) = n(C2)+n(D1)+
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n(D2) + n(Bℓ + v′v) + 3, and n2(G) = n2(C2) + n2(D1) + n2(D2) + n2(Bℓ + v′v)− 1,

we have

exc(F )− 2 = (exc(F2)− 2) + (exc(FD,1)− 2) + exc(FD,2) + (exc(Fℓ)− 2)

≤ n(G) + n2(G)

4
− 1

2
+ ∆(C2) + ∆(D1) + ∆̂(D2) + ∆(Bℓ + v′v, v′v)

≤ n(G) + n2(G)

4
− 3

2
,

since ∆(C2),∆(Bℓ + v′v, v′v) ≤ −1
2

and ∆(D1) + ∆̂(D2) ≤ 0. Thus exc(F ) satisfies our

desired bound.

For the time analysis, as we only call Algo on inputs whose sizes sum to less than n,

line 9 takes at most fAlgo(n) time. Furthermore, by Proposition 3.5.2, the remaining lines

require O(n) time. Thus, EC(G, e,−3
2
) takes fAlgo(n− 1) +O(n) time.

To summarize, we have the following.

Corollary 3.5.8. Algo is correct and takes O(n2) time.

Proof. We show inductively that we can takes fAlgo(n) = O(n2). First note that lines

1-5 take constant time. Line 6 takes linear time to check, and if executed, lines 7-12 take

O(n) +
∑k

i=1 fAlgo(n(Bi)) ≤ O(n) +
∑k

i=1O(n(Bi)
2) = O(n2).

Line 13 take linear time by Proposition 3.5.2, and in lines 14-17, we execute exactly one

of EC(G, e,∆) and ÊC(G, e), which takes fAlgo(n− 1)+O(n) time by Propositions 3.5.3,

3.5.4, 3.5.6, and 3.5.7. It follows that we can take fAlgo(n) = O(n2).

Corollary 3.5.9. Given a simple 2-connected subcubic graph G, we can find an even cover

F of G with exc(F ) ≤ n(G)+n2(G)
4

+ 1 in quadratic time.

Proof. Pick an arbitrary edge e ∈ E(G). Run Algo(G, e, true) and Algo(G, e, false).

One of the returned even covers will have excess at most n(G)+n2(G)
4

+ 1.
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Let us now complete the proof of Theorem 1.1.2, restated here for the reader’s conve-

nience.

Proof. By Corollary 3.5.9, we can find an even cover F of G with exc(F ) ≤ n(G)+n2(G)
4

+1

in quadratic time. Then by Proposition 1.2.2, we can convert F to a TSP walk of length

exc(F )− 2 + n(G) ≤ 5n(G)+n2(G)
4

− 1 in linear time.

If the input graph G is cubic (i.e. n2(G) = 0), then Theorem 1.1.2 finds a TSP walk of

length at most 5n(G)
4

−1 in quadratic time. Since every TSP walk trivially has length at least

n(G), this gives a 5
4
-approximation algorithm for TSP walks in 2-connected cubic graphs.

For general subcubic graphs, Theorem 1.1.2 finds a TSP walk of length at most 3
2
n(G)

which trivially yields a 3
2
-approximation algorithm. The bound gets better for subcubic

graphs with fewer vertices of degree 2; for example, if n2(G) ≤ 1
3
n(G), then Theorem 1.1.2

yields a TSP walk of length at most 4
3
n(G). We suspect that refining the ideas developed in

this paper could lead to another 4
3
-approximation algorithm for subcubic graphs, matching

the current best ratio by Mömke and Svensson [46], and possibly beyond.
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CHAPTER 4

CONCLUSION

In Chapter 2, we developed a theory of Tutte paths where the number of possible bridges

is bounded. In Chapter 3, we provided a 5/4-approximation for the cubic TSP by means of

finding efficient even covers. We will now discuss possible future directions for this work.

4.1 Future Directions

There has been extensive work in extending Tutte path results to other surfaces. Thomas

and Yu [59] showed that 4-connected projective-planar graphs are Hamiltonian and Kawarabay-

ishi and Ozeki [39] later showed that such graphs are Hamiltonian-connected. Both of these

results relied on Tutte path techniques. Both Grübaum [28] and Nash-Williams [49] con-

jectured every 4-connected graph embedded in the torus is Hamiltonian. There has been

much in partial results [3, 11, 60, 61] towards this conjecture, again relying on a Tutte path

strategy. It is natural to try and extend our quantitative Tutte path result to these different

settings.

A 2-walk is a spanning walk that visits each vertex at most twice. As a relaxation of the

Hamiltonian cycle problem, Gao and Richter [23] showed that every 3-connected planar

graph has a 2-walk. Nakamoto, Oda, and Ota [48] asked if every 3-connected n-vertex

planar graph has a 2-walk such that the number of vertices visited twice is n/3+o(1). Note

if this were true, it would directly imply the result of Kawarabayashi and Ozeki [40] on the

length of tsp walks in 3-connected planar graphs up to to additive constant error. Later,

Gao, Richter, and Yu [24] showed that every 3-connected planar graph has a 2-walk, such

that any vertex visiting twice is contained in a 3-cut. This was developed by developing

a system of distinct representatives (SDR) between a Tutte path and its bridges. It would

be interesting if this SDR can be developed simultaneously while bounding the number of
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nontrivial bridges to be n/3 + o(1). This could have potential applications in answering

Nakamoto, Oda, and Ota’s question.

From an algorithm’s perspective, our approximation algorithm for cubic TSP is unso-

phisticated as it simply provides a walk of length 5n/4−1 where n is the number of vertices.

As every TSP walk has length at least n, this provides the 5/4-approximation guarantee.

To push the 5/4-approximation guarantee further, a possible strategy is to develop effi-

cient means to compute better lower bound guarantees on the optimal walk. This seems

challenging, as this lower bound guarantee cannot be used to detect if a graph is Hamil-

tonian or not, as the Hamiltonian cycle problem remains NP-hard even when restricted to

3-connected cubic planar graphs [25].
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[29] B. Grünbaum and J. Malkevitch, “Pairs of edge-disjoint hamiltonian circuits,” Ae-
quationes Math, vol. 14, no. 1/2, pp. 191–196, 1976.

[30] F. Guthrie, “Note on the colouring of maps,” Proceedings of the Royal Society of
Edinburgh, vol. 10, pp. 727–728, 1880.

[31] W. R. Hamilton, “Account of the icosian calculus,” in Proceedings of the Royal Irish
Academy, vol. 6, 1858, pp. 415–416.

[32] W. R. Hamilton, “Memorandum respecting a new system of roots of unity,” Philo-
sophical Magazine, vol. 12, no. 446, p. 1856, 1856.

[33] D. A. Holton and B. D. McKay, “The smallest non-hamiltonian 3-connected cubic
planar graphs have 38 vertices,” Journal of Combinatorial Theory, Series B, vol. 45,
no. 3, pp. 305–319, 1988.

[34] B. Jackson and N. C. Wormald, “Longest cycles in 3-connected planar graphs,” Jour-
nal of Combinatorial Theory, Series B, vol. 54, no. 2, pp. 291–321, 1992.

[35] A. R. Karlin, N. Klein, and S. O. Gharan, “A (slightly) improved approximation al-
gorithm for metric tsp,” in Proceedings of the 53rd Annual ACM SIGACT Symposium
on Theory of Computing, 2021, pp. 32–45.

[36] R. M. Karp, “Reducibility among combinatorial problems,” in Complexity of Com-
puter Computations: Proceedings of a symposium on the Complexity of Computer
Computations, R. E. Miller, J. W. Thatcher, and J. D. Bohlinger, Eds. Boston, MA:
Springer US, 1972, pp. 85–103, ISBN: 978-1-4684-2001-2.

[37] M. Karpinski, M. Lampis, and R. Schmied, “New inapproximability bounds for tsp,”
Journal of Computer and System Sciences, vol. 81, no. 8, pp. 1665–1677, 2015.

[38] M. Karpinski and R. Schmied, “Approximation hardness of graphic tsp on cubic
graphs,” RAIRO-Operations Research, vol. 49, no. 4, pp. 651–668, 2015.

77



[39] K.-i. Kawarabayashi and K. Ozeki, “4-connected projective-planar graphs are hamiltonian-
connected,” Journal of Combinatorial Theory, Series B, vol. 112, pp. 36–69, 2015.

[40] K.-i. Kawarabayashi and K. Ozeki, “Spanning closed walks and tsp in 3-connected
planar graphs,” Journal of Combinatorial Theory, Series B, vol. 109, pp. 1–33, 2014.

[41] A. Kenneth and W. Haken, “Every planar map is four colorable part i. discharging,”
Illinois Journal of Mathematics, vol. 21, pp. 429–490, 1977.

[42] J. Kessler and J. M. Schmidt, “Dynamics of cycles in polyhedra i: The isolation
lemma,” arXiv preprint arXiv:2002.07698, 2020.

[43] T. P. Kirkman, “On the representation of polyhedra,” Proceedings of the Royal Soci-
ety of London, no. 146, pp. 413–418, 1856.

[44] P. N. Klein, “A linear-time approximation scheme for tsp in undirected planar graphs
with edge-weights,” SIAM Journal on Computing, vol. 37, no. 6, pp. 1926–1952,
2008.

[45] M. Lampis, “Improved inapproximability for tsp,” in Approximation, Randomiza-
tion, and Combinatorial Optimization. Algorithms and Techniques, Springer, 2012,
pp. 243–253.

[46] T. Mömke and O. Svensson, “Approximating graphic tsp by matchings,” in 2011
IEEE 52nd Annual Symposium on Foundations of Computer Science, IEEE, 2011,
pp. 560–569.

[47] M. Mucha, “-approximation for graphic tsp,” Theory of computing systems, vol. 55,
no. 4, pp. 640–657, 2014.

[48] A. Nakamoto, Y. Oda, and K. Ota, “3-trees with few vertices of degree 3 in circuit
graphs,” Discrete mathematics, vol. 309, no. 4, pp. 666–672, 2009.

[49] C. Nash-Williams, “Unexplored and semi-explored territories in graph theory,” New
directions in the theory of graphs, pp. 149–186, 1973.

[50] O. Ore, The four-color problem. New York: Academic Press, 1967.

[51] K. Ozeki, “A shorter proof of thomassen’s theorem on tutte paths in plane graphs,”
SUT journal of Mathematics, vol. 50, no. 2, pp. 417–425, 2014.

[52] N. Robertson, D. Sanders, P. Seymour, and R. Thomas, “The four-colour theorem,”
journal of combinatorial theory, Series B, vol. 70, no. 1, pp. 2–44, 1997.

78



[53] T. L. Saaty, “Thirteen colorful variations on guthrie’s four-color conjecture,” The
American Mathematical Monthly, vol. 79, no. 1, pp. 2–43, 1972.

[54] D. P. Sanders, “On paths in planar graphs,” Journal of Graph Theory, vol. 24, no. 4,
pp. 341–345, 1997.

[55] A. Schmid and J. M. Schmidt, “Computing tutte paths,” in 45th International Collo-
quium on Automata, Languages, and Programming (ICALP 2018), Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2018.
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